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Introduction: Continuous and discrete time dynamics

Continuous time dynamics↔ Discrete time dynamics

Example: gradient descent for convex optimization

minimizex∈Rn f (x) (convex differentiable)

Continuous Discrete

Dynamics Ẋ (t) = −∇f (X (t)) x (k+1) − x (k) = −s∇f (x (k))

Lyapunov function ‖X (t)− x?‖2 ‖x (k) − x?‖2

Convergence rate f (X (t))− f ? = O(1/t) f (x (k))− f ? = O(1/k)
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Introduction

A dynamical systems approach to online learning and convex optimization

Design dynamics for online learning and optimization in continuous time.

Discretize to get algorithms.

Why continuous time?

1 Simple analysis.
2 Provides insight into the discrete process (can lead to new heuristics).
3 Streamlines design of new methods.
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Online learning

Sequential decision problems:

Ubiquitous in Cyber-Physical Systems (CPS)

Routing (transportation, communication)

Power networks

Real-time bidding in online advertising
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Distributed learning in games

Online Learning Model (decision maker k,
action set Ak )

1: for t ∈ N do
2: Play action a ∼ x

(t)
k ∈ ∆Ak

3: Discover loss vector `(t)
k

4: Update x
(t+1)
k = uk

(
x

(t)
k , `

(t)
k

)

5: end for

Environment

Agent k

outcome
`
(t)
k

learning algorithm

x
(t+1)
k = u

(
x
(t)
k , `

(t)
k

)

Figure: Sequential decision problem.

Game theory point of view:
Equilibria: a good description of system efficiency at steady-sate.

Systems rarely operate at equilibrium.
Online learning point of view:

1 A prescriptive model: How do we drive system to eq.
2 A descriptive model: How would players behave in the game.

Goals

Define classes of algorithms for which we can prove convergence.

Robustness to stochastic perturbations.

Heterogeneous learning (different agents use different algorithms).

Convergence rates.
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A brief review

Discrete time:

Hannan consistency: [7]

Hedge algorithm for two-player games: [6]

Regret based algorithms: [8]

Online learning in games: [5]

Continuous time:

Evolution in populations: [22]

Replicator dynamics in evolutionary game theory [24]

No-regret dynamics for two player games [8]

[7]J. Hannan. Approximation to bayes risk in repeated plays.
Contributions to the Theory of Games, 3:97–139, 1957
[6]Y. Freund and R. E. Schapire. Adaptive game playing using multiplicative weights.
Games and Economic Behavior, 29(1):79–103, 1999
[8]S. Hart and A. Mas-Colell. A general class of adaptive strategies.
Journal of Economic Theory, 98(1):26 – 54, 2001
[5]N. Cesa-Bianchi and G. Lugosi. Prediction, learning, and games.
Cambridge University Press, 2006
[22]W. H. Sandholm. Population games and evolutionary dynamics.
Economic learning and social evolution. Cambridge, Mass. MIT Press, 2010
[24]J. W. Weibull. Evolutionary game theory.
MIT press, 1997
[8]S. Hart and A. Mas-Colell. A general class of adaptive strategies.
Journal of Economic Theory, 98(1):26 – 54, 2001
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Nonatomic, convex potential games

Notation:

x = (x1, . . . , xK ) ∈ ∆A1 × · · · ×∆AK `(x) = (`1(x), . . . , `K (x))

Nonatomic, convex potential game

There exists a convex differentiable function f such that:

`(x) = ∇f (x)

Nash equilibria X ?

x? is a Nash equilibrium ⇔ x? is a minimizer of f
Nash condition first order optimality

∀x , 〈`(x?), x〉 ≥ 〈`(x?), x?〉 ∀x , 〈∇f (x?), x − x?〉 ≥ 0

xX
x?

∇f(x?) = `(x?)

Figure: First order optimality conditions of the potential f
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Example: routing game

Online Learning Model. Action set Ak :
paths from ok to dk .
1: for t ∈ N do
2: Play a ∼ x

(t)
k ∈ ∆Ak

3: Discover `(t)
k

4: Update x
(t+1)
k = uk

(
x

(t)
k , `

(t)
k

)

5: end for

2 3

0 1

4

5

6

Figure: Routing game

x
(t)
1 ∈ ∆A1 Sample a ∼ x

(t)
1 Discover `(t)

1 Update x
(t+1)
1
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The Hedge algorithm

Hedge algorithm
1: for t ∈ N do
2: Play a ∼ x

(t)
k

3: Discover `(t)
k

4: Update x
(t+1)
k,a ∝ x

(t)
k,ae
−ηt`

(t)
k,a

5: end for

Exponentially weighted average forecaster [5].
Multiplicative weights update [1].
Exponentiated gradient descent [9].
Entropic descent [2].
Log-linear learning [4], [15].

[5]N. Cesa-Bianchi and G. Lugosi. Prediction, learning, and games.
Cambridge University Press, 2006
[1]S. Arora, E. Hazan, and S. Kale. The multiplicative weights update method: a meta-algorithm and
applications.
Theory of Computing, 8(1):121–164, 2012
[9]J. Kivinen and M. K. Warmuth. Exponentiated gradient versus gradient descent for linear predictors.
Information and Computation, 132(1):1 – 63, 1997
[2]A. Beck and M. Teboulle. Mirror descent and nonlinear projected subgradient methods for convex
optimization.
Oper. Res. Lett., 31(3):167–175, May 2003
[4]L. E. Blume. The statistical mechanics of strategic interaction.
Games and Economic Behavior, 5(3):387 – 424, 1993
[15]J. R. Marden and J. S. Shamma. Revisiting log-linear learning: Asynchrony, completeness and
payoff-based implementation.
Games and Economic Behavior, 75(2):788 – 808, 2012.
ISSN 0899-8256
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Replicator ODE

Idea

Take continuous-time limit of Hedge.

Study convergence of ODE.

View learning dynamics as a discretization of an ODE.

Relate convergence of discrete algorithm to convergence of ODE.

In Hedge x
(t+1)
a ∝ x

(t)
a e−ηt`

(t)
a , take ηt → 0. Get replicator equation [24].

. . .
0

η1 η2 η3 η4

Figure: Underlying continuous time

Dynamics Ẋa = Xa (〈`(X ),X〉 − `a(X ))

Lyapunov function DKL(x?,X (t))

t(f (X (t))− f ?) + DKL(x?,X (t))

Convergence rate f (X (t))− f ? = O(1/t)

[24] J. W. Weibull. Evolutionary game theory.
MIT press, 1997
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AREP dynamics: Approximate REPlicator

Ẋa = Xa (〈`(X ),X 〉 − `a(X ))

Discrete approximation of the replicator ODE

x
(t+1)
a − x

(t)
a

ηt
= x

(t)
a

(〈
`(x(t)), x(t)

〉
− `a(x(t))

)
+ U

(t+1)
a

ηt discretization time steps.

(U(t))t≥1 perturbations that satisfy for all T > 0,

limτ1→∞maxτ2:
∑τ2

t=τ1 ηt<T

∥∥∥∑τ2
t=τ1

ηtU(t+1)
∥∥∥ = 0

(a sufficient condition is that ∃q ≥ 2: supτ E ‖U(τ)‖q <∞ and
∑
τ η

1+
q
2

τ <∞)

Examples

Hedge, REP, (stochastic and deterministic).

[3] M. Benaïm. Dynamics of stochastic approximation algorithms.
In Séminaire de probabilités XXXIII, pages 1–68. Springer, 1999
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Asymptotic Pseudo Trajectory

Sufficient conditions for x(t) to be an asymptotic pseudo trajectory of the ODE flow.

x(0)

x(1)

Φt0 (x(0))

Figure: Asymptotic Pseudo Trajectory



12/38

Online Learning and the Replicator ODE Accelerated Mirror Descent References

Asymptotic Pseudo Trajectory

Sufficient conditions for x(t) to be an asymptotic pseudo trajectory of the ODE flow.

x(0)

x(1)

x(2)

Φt0 (x(0))

Φt1 (x(1))

Figure: Asymptotic Pseudo Trajectory



12/38

Online Learning and the Replicator ODE Accelerated Mirror Descent References

Asymptotic Pseudo Trajectory

Sufficient conditions for x(t) to be an asymptotic pseudo trajectory of the ODE flow.

x(0)

x(1)

x(2)

x(3)

Φt0 (x(0))

Φt1 (x(1))

Φt2 (x(2))

Figure: Asymptotic Pseudo Trajectory



12/38

Online Learning and the Replicator ODE Accelerated Mirror Descent References

Asymptotic Pseudo Trajectory
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Asymptotic Pseudo Trajectory

Figure: Discrete (Hedge) and continuous (Replicator) trajectories


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}





14/38

Online Learning and the Replicator ODE Accelerated Mirror Descent References

Convergence to Nash equilibria

Theorem [12]

In convex potential games, under AREP updates, if ηt ↓ 0 and
∑
ηt =∞, then

x(t) → X ? a.s.

Affine interpolation of x(t) is an asymptotic pseudo trajectory of ODE.

Use f as a Lyapunov function.

However, No convergence rates.

In order to derive convergence rates, can study specific dynamics. E.g. mirror
descent dynamics [10].

[10]S. Krichene, W. Krichene, R. Dong, and A. Bayen. Convergence of heterogeneous distributed
learning in stochastic routing games.
In 53rd Annual Allerton Conference on Communication, Control and Computing, Monticello, IL, 2015
[12] W. Krichene, B. Drighès, and A. Bayen. Learning nash equilibria in congestion games.
SIAM Journal on Control and Optimization (SICON), 2015
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Numerical example

2 3

0 1

4

5

6

Figure: Example with strongly convex potential.

Centered Gaussian noise on edges.

Population 1: Hedge with (η1t )

Population 2: Hedge with (η2t )
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Outline

1 Online Learning and the Replicator ODE

2 Accelerated Mirror Descent



16/38

Online Learning and the Replicator ODE Accelerated Mirror Descent References

First-order optimization

Constrained convex optimization

minimize f (x) (convex, ∇f Lipschitz)

subject to x ∈ X (closed convex)

Examples:

Cost function

Machine learning: loss function measures discrepancy of model and training data
set {(ξi , yi )}

f (x) =
1
m

m∑
i=1

`(gx (ξi ), yi ) + R(x)

x ∈ Rn: parameter vector
ξi ∈ Rn: feature vector
yi ∈ R: output

First order methods?

Dimensionality n and size m of data sets: Higher order methods prohibitively
expensive.

First-order: can evaluate f (x) and ∇f (x).
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First-order optimization: from continuous to discrete time

Gradient descent O(1/k)

Mirror descent [16]
Dual Averaging [19] O(1/k)

Nesterov’s accelerated method [18, 17] O(1/k2)

Unified approach to derive these algorithms

Design ODE in continuous time using Lyapunov argument.

Discretize.

[16]A. S. Nemirovsky and D. B. Yudin. Problem complexity and method efficiency in optimization.
Wiley-Interscience series in discrete mathematics. Wiley, 1983
[19]Y. Nesterov. Primal-dual subgradient methods for convex problems.
Mathematical Programming, 120(1):221–259, 2009
[18]Y. Nesterov. A method of solving a convex programming problem with convergence rate o (1/k2).
Soviet Mathematics Doklady, 27(2):372–376, 1983
[17]Y. Nesterov. Smooth minimization of non-smooth functions.
Mathematical Programming, 103(1):127–152, 2005
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From Gradient Descent to Mirror Descent

Gradient descent Mirror descent

Dynamics Ẋ (t) = −∇f (X (t))

{
Ż(t) = −∇f (X (t))

X (t) = ∇ψ∗(Z(t))

Lyapunov function 1
2‖X (t)− x?‖2 Dψ∗ (z?, Z(t))

Convergence rate f (X (t))− f ? = O(1/t) f (X (t))− f ? = O(1/t)

Nemirovski and Yudin [16]
1 Start from Bregman divergence on the dual

space

Dψ∗ (Z , z?)

= ψ
∗(Z)− ψ∗(z?)−

〈
∇ψ∗(z?), Z − z?

〉

2 Design dynamics to make it a Lyapunov
function.

E E∗X

∇ψ∗

∂ψ

Z(t)

−∇f(X(t))X(t)

Figure: Illustration of Mirror Descent

[16]A. S. Nemirovsky and D. B. Yudin. Problem complexity and method efficiency in optimization.
Wiley-Interscience series in discrete mathematics. Wiley, 1983
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Mirror operator ∇ψ∗

ψ∗ is defined and differentiable on E∗, ∇ψ∗ maps E∗ to X .

Sufficient condition

ψ : X → R is convex, closed, (essentially) strongly convex, such that epi f contains no
non-vertical half-lines.

x1

x2

ψ(x) =
∑
i xi ln xi + δ∆(x)

epiψ

z1

z2

ψ∗(z) = ln(
∑
i e
zi )

Figure: Example of dual distance generating functions ψ and ψ∗.

[21]R. Rockafellar. Convex Analysis.
Princeton University Press, 1970
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An ODE interpretation of Nesterov’s method

Su et al. [23]: ODE interpretation of Nesterov’s method for unconstrained problems.
Parameter r ≥ 2.

Unconstrained Nesterov

Dynamics Ẍ + r+1
t Ẋ +∇f (X ) = 0

Lyapunov function E(t) := t2
r2 (f (X )− f ?) + 1

2‖X + t
r Ẋ − x?‖22

Convergence rate f (X (t))− f ? = O(1/t2)

Convergence rate

f (X (t))− f ? ≤ r2

t2
E(t) ≤ r2

t2
E(0) =

r2

t2
‖x0 − x?‖2

[23]W. Su, S. Boyd, and E. Candes. A differential equation for modeling nesterov’s accelerated gradient
method: Theory and insights.
In NIPS, 2014
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Accelerated Mirror Descent in continuous time

We start from a Lyapunov function [11]

V (X ,Z , t) =
t2

r2
(f (X )− f ?) + Dψ∗ (Z , z?)

Z ∈ E∗, z? its value at equilibrium.

AMD (proximal Nesterov)

Dynamics

{
Ż = − t

r∇f (X ),

Ẋ = r
t (∇ψ∗(Z)− X ),

Lyapunov function t2
r2 (f (X (t))− f ?) + Dψ∗ (Z(t), z?)

Convergence rate f (X (t))− f ? = O(1/t2)

Existence, uniqueness and viability of the solution

Suppose ∇f and ∇ψ∗ are Lipschitz. Then the AMD ODE has a unique solution
defined on [0,+∞), and X (t) remains in X .

[11]W. Krichene, A. Bayen, and P. Bartlett. Accelerated mirror descent in continuous and discrete time.
In 29th Annual Conference on Neural Information Processing Systems (NIPS), Montreal, Canada, 2015
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Damped oscillator interpretation

Damped nonlinear oscillator

Accelerated mirror descent ODE is equivalent to

Ẍ +
r + 1
t

Ẋ = −∇2ψ∗(Z)∇f (X )

Special case: Ẍ + r+1
t

Ẋ = −∇f (X )

r+1
t

Ẋ : vanishing friction term.

∇2ψ∗(Z): transforms the potential field to keep trajectory inside X .
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Effect of the parameter r

Ẍ +
r + 1
t

Ẋ = −∇2ψ∗(Z)∇f (X )

Figure: Effect of the parameter r ∈ [2, 50].
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Effect of ∇2ψ∗(Z )

Ẍ +
r + 1
t

Ẋ = −∇2ψ∗(Z)∇f (X )

Figure: Flow field x 7→ ∇2ψ∗(Z(t))∇f (x), along the solution trajectory Z
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Averaging Interpretation{
Ż = − t

r
∇f (X ),

Ẋ = r
t
(∇ψ∗(Z)− X ),

Equivalent to
Ż = − t

r
∇f (X ),

X (t) =
∫ t
0 w(τ)∇ψ∗(Z(τ))dτ∫ t

0 w(τ)dτ
,

(w(τ) = τ r−1)

AMD with generalized averaging

AMDw,η


Ż = −η(t)∇f (X ),

X (t) =
∫ t
0 w(τ)∇ψ∗(Z(τ))dτ∫ t

0 w(τ)dτ

∇ψ∗(z0) = x0.

E E∗X

∇ψ∗

∂ψ

Z(t)
−η(t)∇f(X(t))X(t)

∇ψ∗(Z(t))

Figure: Averaging interpretation: Z evolves in E∗, X is a weighted average of the mirrored
trajectory ∇ψ∗(Z).
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Example: accelerated entropic descent on the simplex

Suppose the feasible set is the probability simplex X = ∆ = {x ∈ Rn
+ :
∑

i xi = 1}.

ψ(x) =
∑
i

xi ln xi + δ(x |∆), ψ∗(z) = ln
∑
i

ezi , ∇ψ∗(z)i =
ezi∑
i e

zi
,

Accelerated replicator ODE
˙̌Zi = Ži

(〈
Ž ,∇f (X )

〉
−∇i f (X )

)
X =

∫ t
0 τ

r−1Ž(τ)dτ∫ t
0 τ

r−1dτ

Replicator:
Ẋi = Xi (〈X ,∇f (X )〉 − ∇i f (X ))
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Numerical Example

Figure: Accelerated entropic descent on a quadratic on the simplex.
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Generalized Averaging

Dynamics AMDw,η





Ż = −η(t)∇f (X ),

X (t) =
∫ t
0 w(τ)∇ψ∗(Z(τ))dτ∫ t

0 w(τ)dτ

Lyapunov function Er (t) := r(t)(f (X (t))− f ?) + Dψ∗ (Z(t), z?)

Convergence rate f (X (t))− f ? = O(1/r(t))

Derivative of energy function

d

dt
Er (t) ≤ (f (X )− f ?)(r ′ − η) +

〈
∇f (X ), Ẋ

〉
(r − η

a
)

a(t) = w(t)/
∫ t
0 w(τ)dτ , i.e. w(t) = a(t)

a(0)

∫ t
0 a(τ)dτ .

Convergence rate

If a(t) = η(t)
r(t)

and η(t) ≥ r ′(t), then Er is a Lyapunov function for AMDw,η and

f (X (t))− f ? ≤ Er (t0)

r(t)

[13]W. Krichene, A. Bayen, and P. Bartlett. Adaptive averaging in accelerated descent dynamics.
In 30th Annual Conference on Neural Information Processing Systems (NIPS), in review, 2016
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Ż = −η(t)∇f (X ),

X (t) =
∫ t
0 w(τ)∇ψ∗(Z(τ))dτ∫ t

0 w(τ)dτ

Lyapunov function Er (t) := r(t)(f (X (t))− f ?) + Dψ∗ (Z(t), z?)

Convergence rate f (X (t))− f ? = O(1/r(t))

Derivative of energy function

d

dt
Er (t) ≤ (f (X )− f ?)(r ′ − η) +

〈
∇f (X ), Ẋ
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Ż = −η(t)∇f (X ),

X (t) =
∫ t
0 w(τ)∇ψ∗(Z(τ))dτ∫ t

0 w(τ)dτ

Lyapunov function Er (t) := r(t)(f (X (t))− f ?) + Dψ∗ (Z(t), z?)

Convergence rate f (X (t))− f ? = O(1/r(t))

Derivative of energy function

d

dt
Er (t) ≤ (f (X )− f ?)(r ′ − η) +

〈
∇f (X ), Ẋ

〉
(r − η

a
)

a(t) = w(t)/
∫ t
0 w(τ)dτ , i.e. w(t) = a(t)

a(0)

∫ t
0 a(τ)dτ .

Convergence rate

If a(t) = η(t)
r(t)

and η(t) ≥ r ′(t), then Er is a Lyapunov function for AMDw,η and

f (X (t))− f ? ≤ Er (t0)

r(t)

[13]W. Krichene, A. Bayen, and P. Bartlett. Adaptive averaging in accelerated descent dynamics.
In 30th Annual Conference on Neural Information Processing Systems (NIPS), in review, 2016



29/38

Online Learning and the Replicator ODE Accelerated Mirror Descent References

Adaptive Averaging

d

dt
Er (t) ≤ (f (X )− f ?)(r ′ − η) +

〈
∇f (X ), Ẋ

〉
(r − η

a
)

We set a(t) = η(t)
r(t)

to cancel last term.

Instead,

Adaptive Averaging {
a(t) = η(t)

r(t)
if
〈
∇f (X ), Ẋ

〉
> 0

a(t) constant otherwise.
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Discrete AMD algorithm in the quadratic case.

Accelerated mirror descent in discrete time
1: Initialize x̃(0) = x0, ž(0) = x0
2: for k ∈ N do
3: ž(k+1) = argminž∈X

βks
r2
〈
∇f (x(k)), ž

〉
+ Dψ(ž, x(k))

4: x̃(k+1) = argminx̃∈X γs
〈
∇f (x(k)), x̃

〉
+ R(x̃ , x(k))

5: x(k+1) = λk ž
(k+1) + (1− λk )x̃(k+1), with λk =

√
sak

1+
√
sak

.

6: ak = β
k
√
s

7: end for

z(k)

z(k+1)

−ηk∇f(x(k))

x(k)

ž(k+1)

x̃(k+1)

x(k+1)

E E∗X

∇ψ∗

∂ψ

Figure: Illustration of the discrete AMD algorithm.
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Discrete AMD algorithm in the quadratic case.
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βks
r2
〈
∇f (x(k)), ž
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β

k
√
s

if f (x̃(k+1))− f (x̃(k)) > 0

ak−1 otherwise
7: end for
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Illustration of Adaptive Averaging

Figure: Illustration of adaptive averaging
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Convergence rate

Convergence rate

If γ ≥ ββmaxLf Lψ∗
r2 and s ≤ `R

2Lf γ
, then under AMD (both adaptive and non-adaptive),

f (x̃(k))− f ? ≤ C/k2,

where C = Dψ∗ (z0, z?) + s
r2 (f (x0)− f ?).

Proof: Ẽ (k) = V (x̃(k), z(k), k
√
s) is a Lyapunov sequence.
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Heuristics

Gradient Restart [20] Speed Restart [23] Adaptive Averaging [13]

Damped non-linear oscillator
Ẍ + r+1

t Ẋ +∇f (X ) = 0
Damped non-linear oscillator
Ẍ + r+1

t Ẋ +∇f (X ) = 0

Generalized Averaging



Ż = −η(t)∇f (X ),

X (t) =
∫ t
0 w(τ)∇ψ∗(Z(τ))dτ∫ t

0 w(τ)dτ

Restart when〈
∇f (X ), Ẋ

〉
> 0

Restart when
d
dt ‖Ẋ‖ < 0

a(t) = η(t)
r(t) if

〈
∇f (X ), Ẋ

〉
> 0,

constant otherwise.

Restart when moving
in bad direction

Restart when
progress is slowing

Increase weights on
good portions of trajectory

[20]B. O’Donoghue and E. Candès. Adaptive restart for accelerated gradient schemes.
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Comparison of Heuristics

Figure: Comparison of the adaptive averaging and restarting heuristics
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Higher order methods

Figure: Adaptive averaging for quadratic and cubic accelerated methods.
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Summary / Extensions

Dynamical systems approach to online learning and optimization

Design / analyze dynamics in continuous-time.

Discretize.

Contributions

Online learning algorithms as stochastic approximation of the replicator ODE.

(Estimation and control under Hedge dynamics: not covered in this talk).

Unifying framework for design of accelerated methods for first-order optimization.

Averaging interpretation and heuristics.

Possible extensions

ODE for monotone operators.
Use variational integrators [14] to discretize the ODE.

Discretize dynamics while preserving natural energy of mechanical system.
Discretize Hamilton’s critical action principle instead of ODE.
Combine with Wibisono et al.’s Lagrangian interpretation of AMD dynamics [25].

[14]A. Lew, J. E. Marsden, M. Ortiz, and M. West. Variational time integrators.
International Journal for Numerical Methods in Engineering, 60(1):153–212, 2004
[25]A. Wibisono, A. C. Wilson, and M. I. Jordan. A variational perspective on accelerated methods in
optimization.
CoRR, abs/1603.04245, 2016
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Figure: Picnic in 1 hour!
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