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Introduction: Continuous and discrete time dynamics

Continuous time dynamics <+ Discrete time dynamics

Example: gradient descent for convex optimization

minimizeycgn  f(x) (convex differentiable)

Continuous Discrete
Dynamics X(t) = —=VF(X(t)) Xk () = _sw£(xK)
Lyapunov function IX(t) — x*||? [Ix5) — x*|12

Convergence rate f(X(t)) — f*=0(1/t) F(xW) — £+ = O(1/k)



Introduction

A dynamical systems approach to online learning and convex optimization
@ Design dynamics for online learning and optimization in continuous time.

o Discretize to get algorithms.
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Introduction

A dynamical systems approach to online learning and convex optimization
@ Design dynamics for online learning and optimization in continuous time.

o Discretize to get algorithms.

Why continuous time?

© Simple analysis.
@ Provides insight into the discrete process (can lead to new heuristics).

© Streamlines design of new methods.




© Online Learning and the Replicator ODE

© Accelerated Mirror Descent
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Online learning

Sequential decision problems:
o Ubiquitous in Cyber-Physical Systems (CPS)
o Routing (transportation, communication)

o Power networks

o Real-time bidding in online advertising

ot ot e
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Distributed learning in games

Online Learning Model (decision maker k,

action set Ay)

1

2
3
4:
5

: for t € N do
Play actio

Update x,((

: end for

. t
Discover loss vector KS(

nanm Xﬁt) S APk
)

t+1) _ e (X‘(:)7 eit])

Accelerated Mirror Descent
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learning algorithm
x,(f“) =u (1,'5:)‘1’,;:))

Figure: Sequential decision problem.
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Distributed learning in games

Online Learning Model (decision maker k,

action set Ay)

: for t € N do
Play actio

Update x,((

end for

. t
Discover loss vector Ki

nan~ xﬁt) € AAk
)

t+1) _ e (X‘(:)7 eit])

Accelerated Mirror Descent
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learning algorithm
x,(f“) =u (1,'5:)‘1’,}:))

Environment
Other agents

Agent k

References

outcome
0 (D) ()
@y, . xy)

Figure: Coupled sequential decision problems.
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Distributed learning in games

Online Learning Model (decision maker k, Environment
action set .Ak) Other agents
learning algorithm outcome
1: for t € N do L2y, (1-(’) /u)) PO 0y
2: Play action a ~ Xﬁt) € A4k k Kotk FUL T
3:  Discover loss vector Kf) Agent k
4: Update x,(fH) = ug (x‘(:), Zit))
5: end for Figure: Coupled sequential decision problems.

o Game theory point of view:
o Equilibria: a good description of system efficiency at steady-sate.

o Systems rarely operate at equilibrium.
@ Online learning point of view:

@ A prescriptive model: How do we drive system to eq.
@ A descriptive model: How would players behave in the game.
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Distributed learning in games

Online Learning Model (decision maker k, Environment
action set .Ak) Other agents
learning algorithm outcome
1: for t € N do L2y, (1-(‘) /(r)) te(zd 0y
2. Play action a ~ Xﬁz) c A’Ak k koo b R
3: Discover loss vector Zf) Agent k
4: Update x,(:ﬂ) = ug (x‘(:), ng])
5: end for Figure: Coupled sequential decision problems.

o Game theory point of view:
o Equilibria: a good description of system efficiency at steady-sate.

o Systems rarely operate at equilibrium.
Online learning point of view:

@ A prescriptive model: How do we drive system to eq.
@ A descriptive model: How would players behave in the game.

o Define classes of algorithms for which we can prove convergence.

@ Robustness to stochastic perturbations.
o Heterogeneous learning (different agents use different algorithms).

o Convergence rates.
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A brief review

Discrete time:
e Hannan consistency: [7]
o Hedge algorithm for two-player games: [6]
o Regret based algorithms: [8]
@ Online learning in games: [5]
Continuous time:
o Evolution in populations: [22]
@ Replicator dynamics in evolutionary game theory [24]

@ No-regret dynamics for two player games [8]

[7]J. Hannan. Approximation to bayes risk in repeated plays.

Contributions to the Theory of Games, 3:97—139, 1957

[6]Y. Freund and R. E. Schapire. Adaptive game playing using multiplicative weights.
Games and Economic Behavior, 29(1):79-103, 1999

[8]S. Hart and A. Mas-Colell. A general class of adaptive strategies.
Journal of Economic Theory, 98(1):26 — 54, 2001

[5]N. Cesa-Bianchi and G. Lugosi. Prediction, learning, and games.
Cambridge University Press, 2006

[22]W. H. Sandholm. Population games and evolutionary dynamics.
Economic learning and social evolution. Cambridge, Mass. MIT Press, 2010
[24]J. W. Weibull. Evolutionary game theory.

MIT press, 1997

[8]S. Hart and A. Mas-Colell. A general class of adaptive strategies.
Journal of Economic Theory, 98(1):26 — 54, 2001
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Nonatomic, convex potential games

Notation:

x=(x1,...,xK) € AA x ... x AAK £(x) = (1(x), . .., £k (X))

Nonatomic, convex potential game

There exists a convex differentiable function f such that:

£(x) = VF(x)
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Nonatomic, convex potential games

Notation:

x=(x1,...,xK) € AA x ... x AAK £(x) = (1(x), . .., £k (X))

Nonatomic, convex potential game

There exists a convex differentiable function f such that:
£(x) = VF(x)
Nash equilibria X*
x* is a Nash equilibrium & x* is a minimizer of f
Nash condition first order optimality
W, (6x), %) > (E(x*),x*) Vx, (VF(x*),x —x*) > 0
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Example: routing game

Online Learning Model. Action set Ay:
paths from oy to d.

1: for t € N do

2 Play a~x" € A%
(t)

3: Discover ¢,
4: Update xitﬂ) = ug (Xit),é(kr))
5: end for

Figure: Routing game
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Example: routing game

Online Learning Model. Action set Ay:
paths from oy to d.

1: for t € N do

2 Play a~x" € A%
(t)

3: Discover ¢,
4: Update x£t+1) = ug (X,((t),é(kt))
5: end for

Figure: Routing game

x£t) €At
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Example: routing game

Online Learning Model. Action set Ay:
paths from oy to d.

1: for t € N do

2 Play a~x" € A%
(t)

3: Discover ¢,
4: Update xﬁtH) = ug (X,((t),é(kt))
5: end for

Figure: Routing game

xy) €At
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Example: routing game

Online Learning Model. Action set Ay:
paths from oy to d.

1: for t € N do

2 Play a~x" € A%

3: Discover EE:)

4: Update xﬁ“’l) = ug (X,((t),iff))
5: end for

Figure: Routing game

(t)

. t
Discover €3

(t)

1

x:(lt) €At Sample a ~ x.
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Example: routing game

Online Learning Model. Action set Ay:
paths from oy to d.

1: for t € N do

2 Play a~x" € A%

3: Discover ES:)

4: Update xﬁ“’l) = ug (X,((t),iff))
5: end for

Figure: Routing game

x:(lt) €At Sample a N,X;,t), Discover lg_t) o Update xj(_Hj) B
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The Hedge algorithm

Hedge algorithm

1: for t € N do
2: Play a ~ x,(f)

3: Discover ZE:)
o)
4: Update x,i:l) o xifle 1t a

5: end for

[5]N. Cesa-Bianchi and G. Lugosi. Prediction, learning, and games.

Cambridge University Press, 2006

[1]S. Arora, E. Hazan, and S. Kale. The multiplicative weights update method: a meta-algorithm and
applications.

Theory of Computing, 8(1):121-164, 2012

[9]J. Kivinen and M. K. Warmuth. Exponentiated gradient versus gradient descent for linear predictors.
Information and Computation, 132(1):1 — 63, 1997

[2]A. Beck and M. Teboulle. Mirror descent and nonlinear projected subgradient methods for convex
optimization.

Oper. Res. Lett., 31(3):167-175, May 2003

[4]L. E. Blume. The statistical mechanics of strategic interaction.

Games and Economic Behavior, 5(3):387 — 424, 1993

[15]J. R. Marden and J. S. Shamma. Revisiting log-linear learning: Asynchrony, completeness and

IR < < RN B P
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The Hedge algorithm

Hedge algorithm

1: for t € N do
2: Play a ~ x,(f)
)

3: Discover ZE:
(1)
(3 e

4: Update x,
5: end for

o Exponentially weighted average forecaster [5].
o Multiplicative weights update [1].

o Exponentiated gradient descent [9].

o Entropic descent [2].

o Log-linear learning [4], [15].

[5]N. Cesa-Bianchi and G. Lugosi. Prediction, learning, and games.

Cambridge University Press, 2006

[1]S. Arora, E. Hazan, and S. Kale. The multiplicative weights update method: a meta-algorithm and
applications.

Theory of Computing, 8(1):121-164, 2012

[9]J. Kivinen and M. K. Warmuth. Exponentiated gradient versus gradient descent for linear predictors.
Information and Computation, 132(1):1 — 63, 1997

[2]A. Beck and M. Teboulle. Mirror descent and nonlinear projected subgradient methods for convex
optimization.

Oper. Res. Lett., 31(3):167-175, May 2003

[4]L. E. Blume. The statistical mechanics of strategic interaction.

Games and Economic Behavior, 5(3):387 — 424, 1993

[15]J. R. Marden and J. S. Shamma. Revisiting log-linear learning: Asynchrony, completeness and

NIRRT ~ <l AP B T PR
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Replicator ODE

Take continuous-time limit of Hedge.

Study convergence of ODE.
View learning dynamics as a discretization of an ODE.

Relate convergence of discrete algorithm to convergence of ODE.

[24] J. W. Weibull. Evolutionary game theory.
MIT press, 1997



Online Learning and the Replicator ODE Accelerated Mirror Descent References
000000800000 0000000000000 0000000

Replicator ODE

Take continuous-time limit of Hedge.

Study convergence of ODE.

View learning dynamics as a discretization of an ODE.

Relate convergence of discrete algorithm to convergence of ODE.

In Hedge xng) x xgt)e_”fe(at), take n: — 0. Get replicator equation [24].

0
m 2 3 N4
Figure: Underlying continuous time
Dynamics Xa = X ({(4(X), X) — £,(X))
Lyapunov function Dk (x*, X(t))

[24] J. W. Weibull. Evolutionary game theory.
MIT press, 1997
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Replicator ODE

Take continuous-time limit of Hedge.

Study convergence of ODE.

View learning dynamics as a discretization of an ODE.

Relate convergence of discrete algorithm to convergence of ODE.

In Hedge xng) x xgt)e_”fe(at), take n: — 0. Get replicator equation [24].

0
T 2 "3 M4
Figure: Underlying continuous time
Dynamics Xa = X ({(4(X), X) — £,(X))
Lyapunov function Dk (x*, X(t))
t(F(X(t)) — %) + Dxr(x™, X(t))
Convergence rate f(X(t)) — f* = 0O(1/t)

[24] J. W. Weibull. Evolutionary game theory.
MIT press, 1997
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AREP dynamics: Approximate REPlicator

Xa = Xa ((£(X), X) — £:(X))

Discrete approximation of the replicator ODE

(t+1) _ (1)
Xa T Xal _ th) (<E(X(t))’x(t)> _ ea(X(t))) T U§t+l)
Nt

[3] M. Benaim. Dynamics of stochastic approximation algorithms.
In Séminaire de probabilités XXXIII, pages 1-68. Springer, 1999
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AREP dynamics: Approximate REPlicator

Xa = Xa ((£(X), X) — £:(X))

Discrete approximation of the replicator ODE

(t+1) _ (1)
Xa T Xal _ th) (<E(X(t))’x(t)> _ ea(X(t))) T U§t+l)
Nt

o 7; discretization time steps.

[3] M. Benaim. Dynamics of stochastic approximation algorithms.
In Séminaire de probabilités XXXIII, pages 1-68. Springer, 1999
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AREP dynamics: Approximate REPlicator

Xa = Xa ((£(X), X) — £:(X))

Discrete approximation of the replicator ODE

(t+1) _ (1)
Xa T Xal _ th) (<E(X(t))’x(t)> _ ea(X(t))) T U§t+l)
it

o 7; discretization time steps.
o (U®),>1 perturbations that satisfy for all T > 0,

. T2 (t+1) || —
limr; 5 oo max'rz:ZETl ne<T HZt:ﬁ neU H =0

1+ 9
(a sufficient condition is that 3¢ > 2: sup,. E ||[U(™||9 < oo and > 17,+2 < o0)

[3] M. Benaim. Dynamics of stochastic approximation algorithms.
In Séminaire de probabilités XXXIII, pages 1-68. Springer, 1999
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AREP dynamics: Approximate REPlicator

Xa = Xa ((£(X), X) — £:(X))

Discrete approximation of the replicator ODE

(t+1) (t)
RTR 0 (B, xO) — £a(x0)) + U
it

o 7; discretization time steps.
° (U(t))t21 perturbations that satisfy for all T > 0,

. T2 (t+1) || —
|Im7—1~>oo maXTz:Zz'zle ne<T HZt:ﬁ 77tU H =0

1+ 9
(a sufficient condition is that 3¢ > 2: sup,. E ||[U(™||9 < oo and > 17,+2 < o0)

Hedge, REP, (stochastic and deterministic).

[3] M. Benaim. Dynamics of stochastic approximation algorithms.
In Séminaire de probabilités XXXIII, pages 1-68. Springer, 1999
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Asymptotic Pseudo Trajectory

Sufficient conditions for x(!) to be an asymptotic pseudo trajectory of the ODE flow.

Figure: Asymptotic Pseudo Trajectory
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Asymptotic Pseudo Trajectory

Sufficient conditions for x(!) to be an asymptotic pseudo trajectory of the ODE flow.

Figure: Asymptotic Pseudo Trajectory
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Asymptotic Pseudo Trajectory

Sufficient conditions for x(!) to be an asymptotic pseudo trajectory of the ODE flow.

Figure: Asymptotic Pseudo Trajectory
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Asymptotic Pseudo Trajectory

Sufficient conditions for x(!) to be an asymptotic pseudo trajectory of the ODE flow.

Figure: Asymptotic Pseudo Trajectory



Asymptotic Pseudo Trajectory

Figure: Discrete (Hedge) and continuous (Replicator) trajectories
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Convergence to Nash equilibria

Accelerated Mirror Descent

References
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In convex potential games, under AREP updates, if n: | 0 and > n: = oo, then

x5 x* as.

[10]S. Krichene, W. Krichene, R. Dong, and A. Bayen. Convergence of heterogeneous distributed
learning in stochastic routing games.

In 53rd Annual Allerton Conference on Communication, Control and Computing, Monticello, IL, 2015

[12] W. Krichene, B. Drighés, and A. Bayen. Learning nash equilibria in congestion games.
SIAM Journal on Control and Optimization (SICON), 2015
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Convergence to Nash equilibria

References

In convex potential games, under AREP updates, if n: | 0 and > n: = oo, then

x5 x* as.

o Affine interpolation of x(t) is an asymptotic pseudo trajectory of ODE.
@ Use f as a Lyapunov function.

o However, No convergence rates.

@ In order to derive convergence rates, can study specific dynamics. E.g. mirror
descent dynamics [10].

[10]S. Krichene, W. Krichene, R. Dong, and A. Bayen. Convergence of heterogeneous distributed
learning in stochastic routing games.

In 53rd Annual Allerton Conference on Communication, Control and Computing, Monticello, IL, 2015
[12] W. Krichene, B. Drighés, and A. Bayen. Learning nash equilibria in congestion games.
SIAM Journal on Control and Optimization (SICON), 2015
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Numerical example

Figure: Example with strongly convex potential.

Population 1

Population 2

(t)

Mass distributions th

Py L L
0 10 20 30 40 50 60 70 80

100

0.8 path py
path ps = (12,04

0.6

— path p = (ua,v3)

0 10 20 30 40 50 60 70 80
-

90

100

Accelerated Mirror Descent
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o Centered Gaussian noise on edges.

o Population 1: Hedge with (n})

o Population 2: Hedge with (1?)

Path losses £, (x(t))

00

\ )
SINTACAPAPH O NA AN

0 10 20 30 40 50 60 70 80

100

References
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Numerical example

o Centered Gaussian noise on edges.
o Population 1: Hedge with (n})
o Population 2: Hedge with (1?)

Figure: Example with strongly convex potential.

102

1073

1074 £

f@™) - g

107°

10-6

—
=)
=

Figure: Potential values.
For nf = ek, ax € (0,1), E [f(xN)] = £* = 0 (3, ety )

min(ay,1—ay)
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Numerical example

o Centered Gaussian noise on edges.
o Population 1: Hedge with (n})
o Population 2: Hedge with (1?)

Figure: Example with strongly convex potential.

102

1
IS
T

S

E[f(@)] - f*

Figure: Potential values.
0 * I
For nf = sk, a € (0,1), E [f(x)] = £* = 0 (T, smmrati=myy)
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© Accelerated Mirror Descent
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First-order optimization

Constrained convex optimization

minimize  f(x) (convex, Vf Lipschitz)

subject to  x € X (closed convex)

Examples:
@ Cost function

@ Machine learning: loss function measures discrepancy of model and training data

set {(&i,yi)}
1 m
F() = = > HgnlE),) + R()
i=1
e x € R": parameter vector

e & € R": feature vector
e y; € R: output

First order methods?

o Dimensionality n and size m of data sets: Higher order methods prohibitively
expensive.

o First-order: can evaluate f(x) and Vf(x).
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First-order optimization: from continuous to discrete time

Gradient descent O(1/k)

Mirror descent [16]

Dual Averaging [19] O(1/k)

Nesterov’s accelerated method [18, 17] | O(1/k?)

Unified approach to derive these algorithms

@ Design ODE in continuous time using Lyapunov argument.

o Discretize.

[16]A. S. Nemirovsky and D. B. Yudin. Problem complexity and method efficiency in optimization.
Wiley-Interscience series in discrete mathematics. Wiley, 1983

[19]Y. Nesterov. Primal-dual subgradient methods for convex problems.

Mathematical Programming, 120(1):221-259, 2009

[18]Y. Nesterov. A method of solving a convex programming problem with convergence rate o (1/k2).
Soviet Mathematics Doklady, 27(2):372-376, 1983

[17]Y. Nesterov. Smooth minimization of non-smooth functions.

Mathematical Programming, 103(1):127-152, 2005
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From Gradient Descent to Mirror Descent

Gradient descent

Mirror descent

Dynamics X(t) = —=VF(X(t))

Lyapunov function L)X (t) — x*|?

Convergence rate f(X(t)) — f* = 0O(1/t)

[16]A. S. Nemirovsky and D. B. Yudin. Problem complexity and method efficiency in optimization.

Wiley-Interscience series in discrete mathematics. Wiley, 1983

Z(t) = —=VF(X(t))
X(t) = V¢ (Z(t))

F(X(1) — F* = O(1/1)

References
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From Gradient Descent to Mirror Descent

Gradient descent Mirror descent
Dynamics X(t) = —VF(X(1)) {)Z(((?) - ;ngégg

Lyapunov function L)X (t) — x*|? Dy« (z*, Z(t))

,

Convergence rate f(X(t)) — f* = 0O(1/t) f(X(t)) — F* = 0O(1/t)

E o
X
Nemirovski and Yudin [16]
© Start from Bregman divergence on the dual
space
D+ (Z,2%)
=9"(Z) =97 (") = (V" (z"), Z - 2")
@ Design dynamics to make it a Lyapunov vy
function.

Figure: lllustration of Mirror Descent

[16]A. S. Nemirovsky and D. B. Yudin. Problem complexity and method efficiency in optimization.
Wiley-Interscience series in discrete mathematics. Wiley, 1983
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Mirror operator Vi*

1* is defined and differentiable on E*, V* maps E* to X.

Sufficient condition

¥ : X — R is convex, closed, (essentially) strongly convex, such that epif contains no
non-vertical half-lines.

Ty

T3

¥ (2) = In(%,; e¥i)

V(@) = 5, wiInw; +6a (@)
epi 1

Figure: Example of dual distance generating functions ¢ and ™.

[21]R. Rockafellar. Convex Analysis.
Princeton University Press, 1970
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An ODE interpretation of Nesterov's method

Su et al. [23]: ODE interpretation of Nesterov's method for unconstrained problems.
Parameter r > 2.

Unconstrained Nesterov

Dynamics X + #X +VFf(X)=0
Lyapunov function | £(t) := %(f(X) — )+ 3IX+ fX —x*|12

Convergence rate f(X(t)) — f* = O(1/t?)

Convergence rate

r2 r2 r2 .
FX(0) — £ < SE) < S60) = Sl — x|

[23]W. Su, S. Boyd, and E. Candes. A differential equation for modeling nesterov's accelerated gradient
method: Theory and insights.
In NIPS, 2014
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Accelerated Mirror Descent in continuous time

We start from a Lyapunov function [11]
2
V(X,Z,t)= 5 (f(X) = ) + Dy (Z,2%)
r

Z € E*, z* its value at equilibrium.

References

[11]W. Krichene, A. Bayen, and P. Bartlett. Accelerated mirror descent in continuous and discrete time.
In 29th Annual Conference on Neural Information Processing Systems (NIPS), Montreal, Canada, 2015
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Accelerated Mirror Descent in continuous time

We start from a Lyapunov function [11]

2

V(X,Z,t) rz(f(X)*f*)-i-Dw(Z;Z*)

Z € E*, z* its value at equilibrium.

AMD (proximal Nesterov)

Dynamics Z = -1 Vi(X),
X = {(Vy"(2) - X),
Lyapunov function | 5 (F(X(t)) — %) + Dy (Z(t), z")

Convergence rate f(X(t)) — f*

O(1/?)

[11]W. Krichene, A. Bayen, and P. Bartlett. Accelerated mirror descent in continuous and discrete time.
In 29th Annual Conference on Neural Information Processing Systems (NIPS), Montreal, Canada, 2015
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Accelerated Mirror Descent in continuous time

We start from a Lyapunov function [11]

V(X,Z,t) = :—z(f(X) — F*) + Dy+(Z, 2%)

Z € E*, z* its value at equilibrium.

AMD (proximal Nesterov)

7 = —tVf(X)
Dynamics 8 " ?
{ i
Lyapunov function | 5 (F(X(t)) — %) + Dy (Z(t), z")

Convergence rate

FX(1) — F* = O(1/t?)

Existence, uniqueness and viability of the solution

Suppose Vf and Vv* are Lipschitz. Then the AMD ODE has a unique solution
defined on [0, 4+00), and X(t) remains in X.

[11]W. Krichene, A. Bayen, and P. Bartlett. Accelerated mirror descent in continuous and discrete time.
In 29th Annual Conference on Neural Information Processing Systems (NIPS), Montreal, Canada, 2015



Online Learning and the Replicator ODE Accelerated Mirror D References

000000000000 000000@0000000000000

Damped oscillator interpretation

Damped nonlinear oscillator

Accelerated mirror descent ODE is equivalent to

r+1.

X + X = —V2*(Z)VF(X)
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Damped oscillator interpretation

Damped nonlinear oscillator

Accelerated mirror descent ODE is equivalent to

r+1.

X + X = —V2*(Z)VF(X)

o Special case: X + =X = —Vf(X)
° %X vanishing friction term.

e V2¢*(Z): transforms the potential field to keep trajectory inside X'



X+ Jtr L% = vyt (2)VE(X)

Figure: Effect of the parameter r € [2, 50].
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r+1.

X+ —X= —V2*(Z)VF(X)

Figure: Flow field x s V23*(Z(t))Vf(x), along the solution trajectory Z
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Averaging Interpretation

Z=—-1Vf(X),
X = {(Vy*(2) = X),
Equivalent to
Z=-1Vf(X),
JEw(r)V*(Z(T))dT
= 3 )

X(t) Jo w(T)dT
(w(r) =771)

25/38
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Averaging Interpretation

{ Z= —fo(X), AMD with generalized averaging

X = L(Vy*(Z) - X),
Z = —n(t)VF(X),
o w(T)Vp*(Z(7))dT

Equivalent to
AMD,, , {  X(t) = L JEw(r)dr

Z=-tVf(X),
t *
X(2) = BT Ve* (z0) = 0.
o]

(w(r)=7""1)

N E*

E

[ ver(z)
i o~
{

Z(t) .
eV (X))

! 0 Xt
NA )

Vy*

Figure: Averaging interpretation: Z evolves in E*, X is a weighted average of the mirrored

trajectory V™ (Z).
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Example: accelerated entropic descent on the simplex

Suppose the feasible set is the probability simplex X = A = {x € R : 37, x; = 1}.

e

P(x) = Zx,- Inx; + 6(x|A), P*(z) = InZ e, Vy*(z)i = W7

Accelerated replicator ODE

Z; = 7; ({Z, V(X)) — Vif(X))

X = fot T2 (r)dr
— Eeodr

Replicator:
Xi = X; (X, VF(X)) = Vif(X))



Figure: Accelerated entropic descent on a quadratic on the simplex.
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Dynamics

Lyapunov function

Convergence rate

Z = —n(0)VF(X),
X(t) = BeSu Cons
£1(8) = F(O(FOX() — F) + Dy (Z(0), 2*)

f(X(1)) — £ = O(1/r(1))

AMD,, ,

[13]W. Krichene, A. Bayen, and P. Bartlett. Adaptive averaging in accelerated descent dynamics.
In 30th Annual Conference on Neural Information Processing Systems (NIPS), in review, 2016
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Generalized Averaging

Z = —n(t)VF(X),
Dynamics AMD,, , _ S W) ve*(2(r))dr
X(t) = &

Lyapunov function | &.(t) := r(t)(F(X(t)) — f*) 4+ Dy=(Z(t),z*)

Convergence rate f(X(t)) — F* = 0O(1/r(t))

Derivative of energy function

d
dt

a(t) = w(t)/ [ w(r)dr, ie. w(t) = 2 [+ a(r)d7.

E() < (FX) = £)(r' =) + (VF(X), X) (r = 2)

[13]W. Krichene, A. Bayen, and P. Bartlett. Adaptive averaging in accelerated descent dynamics.
In 30th Annual Conference on Neural Information Processing Systems (NIPS), in review, 2016
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Generalized Averaging

Z = —n(t)VF(X),
Dynamics AMD,, , _ S W) ve*(2(r))dr
X(t) = &

Lyapunov function | &.(t) := r(t)(F(X(t)) — f*) 4+ Dy=(Z(t),z*)

Convergence rate f(X(t)) — F* = 0O(1/r(t))

Derivative of energy function

d
dt

a(t) = w(t)/ [ w(r)dr, ie. w(t) = 2 [+ a(r)d7.

E() < (FX) = £)(r' =) + (VF(X), X) (r = 2)

Convergence rate

If a(t) = 7(%) and 7)(t) > r(t), then & is a Lyapunov function for AMD,, , and

OB

[13]W. Krichene, A. Bayen, and P. Bartlett. Adaptive averaging in accelerated descent dynamics.
In 30th Annual Conference on Neural Information Processing Systems (NIPS), in review, 2016
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Adaptive Averaging

T erte) < (F0)— 0~ (V00 X) (- )

o We set a(t) = 21 to cancel last term.

r(t)
@ Instead,

Adaptive Averaging

{a(t) =20 i (VF(X),X) >0

a(t) constant otherwise.

References
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Discrete AMD algorithm in the quadratic case.

Accelerated mirror descent in discrete time
1: Initialize %(9)
2. for k € N do
3. (kD) = arg minyc y % <Vf(x(k)), 2+ Dy (2,x(9)
4 KU = argmingg 75 (VF(xK)), %) + R(%, x(F))

= X0, 2(0) = Xp

5 x(k+D) = X 2041 4 (1 — A )%KHD) | with ), = —ij,‘;; .
6: Ak = kj/E
7: end for

Figure: Illustration of the discrete AMD algorithm.
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Discrete AMD algorithm in the quadratic case.

Accelerated mirror descent in discrete time
0) 0)

. Initialize %(0) = xq, 3(

= xo

2: for k € N do

3 2K = argminycp 08 Bks (VF(xU), 2) + Dy (2,xK)

4 XD = argminge x ,s <Vf(x(k ), %) + R(%, x(F)

5 x(k+D) = X 2041 4 (1 — A )%KHD) | with ), = %
Lo i F(RED) — £(x0) > 0

6: ag — U
aj_1 otherwise

7: end for

Ficure: Illustration of the discrete AMD algorithm.



lllustration of Adaptive Averaging

Figure: Illustration of adaptive averaging
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Convergence rate

Convergence rate

BBmaxL Lx
If v > %

and s < %, then under AMD (both adaptive and non-adaptive),

F(&)) — £* < C/K2,

where C = Dy (20,2*) + z(f(x0) — f*).

Proof: E(K) = V(%K) z(K) k\/s) is a Lyapunov sequence.
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Heuristics

Accelerated Mirror D
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Gradient Restart [20]

Speed Restart [23]

Adaptive Averaging [13]

Damped non-linear oscillator
X+ HX +VF(X)=0

Restart wh_en
<Vf(X),X> >0

Restart when moving
in bad direction

Damped non-linear oscillator
X+ 51X +VF(X)=0

Restart when
Xl <o

Restart when
progress is slowing

Generalized Averaging
Z=—n(t )Vf( ):
J§ w(r)Vy*(2(r))dT

X( ) jo w(T)dT
a(t) = 2 if (VF(X), X) > 0,
constant herW|se

Increase weights on
good portions of trajectory

[20]B. O’'Donoghue and E. Candés. Adaptive restart for accelerated gradient schemes.
Foundations of Computational Mathematics, 15(3):715-732, 2015
[23]W. Su, S. Boyd, and E. Candes. A differential equation for modeling nesterov's accelerated gradient

method: Theory and insights.
In NIPS, 2014

[13]W. Krichene, A. Bayen, and P. Bartlett. Adaptive averaging in accelerated descent dynamics.
In 30th Annual Conference on Neural Information Processing Systems (NIPS), in review, 2016




Comparison of Heuristics

Figure: Comparison of the adaptive averaging and restarting heuristics
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Higher order methods

Figure: Adaptive averaging for quadratic and cubic accelerated methods.
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Summary / Extensions

Dynamical systems approach to online learning and optimization

o Design / analyze dynamics in continuous-time.

o Discretize.

[14]A. Lew, J. E. Marsden, M. Ortiz, and M. West. Variational time integrators.

International Journal for Numerical Methods in Engineering, 60(1):153—-212, 2004

[25]A. Wibisono, A. C. Wilson, and M. I. Jordan. A variational perspective on accelerated methods in
optimization.

CoRR, abs/1603.04245, 2016
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Summary / Extensions

Dynamical systems approach to online learning and optimization

o Design / analyze dynamics in continuous-time.

o Discretize.

Contributions
@ Online learning algorithms as stochastic approximation of the replicator ODE.
o (Estimation and control under Hedge dynamics: not covered in this talk).
o Unifying framework for design of accelerated methods for first-order optimization.

@ Averaging interpretation and heuristics.

[14]A. Lew, J. E. Marsden, M. Ortiz, and M. West. Variational time integrators.

International Journal for Numerical Methods in Engineering, 60(1):153—-212, 2004

[25]A. Wibisono, A. C. Wilson, and M. I. Jordan. A variational perspective on accelerated methods in
optimization.

CoRR, abs/1603.04245, 2016
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Accelerated Mirror Descent
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References

Dynamical systems approach to online learning and optimization

o Design / analyze dynamics in continuous-time.
o Discretize.

Contributions

@ Online learning algorithms as stochastic approximation of the replicator ODE.
o (Estimation and control under Hedge dynamics: not covered in this talk).
o Unifying framework for design of accelerated methods for first-order optimization.
@ Averaging interpretation and heuristics.
Possible extensions
@ ODE for monotone operators.
o Use variational integrators [14] to discretize the ODE.

o Discretize dynamics while preserving natural energy of mechanical system.
o Discretize Hamilton's critical action principle instead of ODE.
o Combine with Wibisono et al.'s Lagrangian interpretation of AMD dynamics [25].

[14]A. Lew, J. E. Marsden, M. Ortiz, and M. West. Variational time integrators.

International Journal for Numerical Methods in Engineering, 60(1):153—-212, 2004

[25]A. Wibisono, A. C. Wilson, and M. I. Jordan. A variational perspective on accelerated methods in
optimization.

CoRR, abs/1603.04245, 2016
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