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Introduction

Online Learning

Sequential decision problems: ubiquitous in Cyber-Physical Systems (CPS):
Routing (transportation, communication), power networks.

Centralization impractical ⇒ Distributed learning, e.g. learning in games.

Convex Optimization

Data-driven decision problems.
Size of data (dimension / sample size) makes higher-order methods prohibitively
expensive.
Active research on: {first-order, accelerated, stochastic} methods.
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Introduction

Emerging idea

Design algorithms for online learning and optimization in continuous-time.

Simple analysis.

Provides insight into the discrete process.

Streamlines design of new methods.

Continuous time ↔ Discrete time
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Distributed learning in games

Online Learning Model
1: for t ∈ N do
2: Play p ∼ x

(t)
k

3: Discover `(t)
k
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5: end for
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Figure: Sequential decision problem.

Equilibria: good description of system efficiency at steady-sate.

Systems rarely operate at equilibrium.
Study learning dynamics as

1 A prescriptive model: How do we drive system to eq.
2 A descriptive model: How would players behave in the game.

Goals

Define classes of algorithms for which we can prove convergence.

Robustness to stochastic perturbations.

Heterogeneous learning (different agents use different algorithms).

Convergence rates.
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A brief review

Discrete time:

Hannan consistency: [4]

Hedge algorithm for two-player games: [3]

Regret based algorithms: [5]

Online learning in games: [2]

Continuous time:

Evolution in populations: [13]

Replicator dynamics in evolutionary game theory [15]

No-regret dynamics for two player games [5]

[4]J. Hannan. Approximation to Bayes risk in repeated plays.
Contributions to the Theory of Games, 3:97–139, 1957
[3]Y. Freund and R. E. Schapire. Adaptive game playing using multiplicative weights.
Games and Economic Behavior, 29(1):79–103, 1999
[5]S. Hart and A. Mas-Colell. A general class of adaptive strategies.
Journal of Economic Theory, 98(1):26 – 54, 2001
[2]N. Cesa-Bianchi and G. Lugosi. Prediction, learning, and games.
Cambridge University Press, 2006
[13]W. H. Sandholm. Population games and evolutionary dynamics.
Economic learning and social evolution. Cambridge, Mass. MIT Press, 2010
[15]J. W. Weibull. Evolutionary game theory.
MIT press, 1997
[5]S. Hart and A. Mas-Colell. A general class of adaptive strategies.
Journal of Economic Theory, 98(1):26 – 54, 2001
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Example: routing game

Online Learning Model
1: for t ∈ N do
2: Play a ∼ x
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5: end for
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Figure: Routing game

x
(t)
1 ∈ ∆1 Sample a ∼ x

(t)
1 Discover `(t)

1 Update x
(t+1)
1

Main problem

Define class of algorithms C such that

uk ∈ C ∀k ⇒ x(t) → X?
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Equilibria of the routing game

Write
x = (xA1 , . . . , xAK

) ∈ ∆A1 × · · · ×∆AK

`(x) = (`A1 (x), . . . , `AK
(x))

Nash equilibria X ?

x? is a Nash equilibrium if for all k, paths in the support of x?Ak
have minimal loss.

∀x , 〈`(x?), x − x?〉 ≥ 0

Rosenthal potential

∃f convex such that ∇f (x) = `(x).

Nash condition ⇔ first order optimality
∀x, 〈`(x?), x − x?〉 ≥ 0 ∀x, 〈∇f (x?), x − x?〉 ≥ 0

xX
x?

∇f(x?) = `(x?)

Figure: First order optimality conditions of the potential f
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Stochastic approximation

Idea:

View the learning dynamics as a discretization of an ODE.

Study convergence of ODE.

Relate convergence of discrete algorithm to convergence of ODE.

In Hedge x
(t+1)
a ∝ x

(t)
a e−ηt`

(t)
a , take ηt → 0.

Replicator equation [15]

∀a ∈ Ak ,
dxa

dt
= xa (〈`(x), x〉 − `a(x))

. . .
0

η1 η2 η3 η4

Figure: Underlying continuous time

[15] J. W. Weibull. Evolutionary game theory.
MIT press, 1997
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AREP dynamics: Approximate REPlicator

dxa

dt
= xa (〈`(x), x〉 − `a(x))

Discretization of the continuous-time replicator dynamics

x
(t+1)
a − x

(t)
a

ηt
= x

(t)
a

(〈
`(x(t)), x(t)

〉
− `a(x(t))

)
+ U

(t+1)
a

ηt discretization time steps.

(U(t))t≥1 perturbations that satisfy for all T > 0,

limτ1→∞maxτ2:
∑τ2

t=τ1 ηt<T

∥∥∥∑τ2
t=τ1

ηtU(t+1)
∥∥∥ = 0

(a sufficient condition is that ∃q ≥ 2: supτ E ‖U(τ)‖q <∞ and
∑
τ η

1+
q
2

τ <∞)

[1] M. Benaïm. Dynamics of stochastic approximation algorithms.
In Séminaire de probabilités XXXIII, pages 1–68. Springer, 1999
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Convergence to Nash equilibria

Theorem [6]

In convex potential games, under AREP updates, if ηt ↓ 0 and
∑
ηt =∞, then

x(t) → X ? a.s.

Affine interpolation of x(t) is an asymptotic pseudo trajectory of ODE.

x(0)
Φt0 (x(0))

x(1)

Φtk−2 (x(k−2))

x(k−1)

x(k)

Φtk−1 (x(k−1))

Use f as a Lyapunov function. proof details

However, No convergence rates.

[6] W. Krichene, B. Drighès, and A. Bayen. Learning nash equilibria in congestion games.
SIAM Journal on Control and Optimization (SICON), to appear, 2014
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Asymptotic Pseudo Trajectory

Figure: Discrete (Hedge) and continuous (Replicator) trajectories


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}
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Numerical example
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Figure: Example with strongly convex potential.

Centered Gaussian noise on edges.
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Figure: Population distributions and noisy path losses

Figure: Potential values.
For ηkt =

θk
tαk

, αk ∈ (0, 1), E
[
f (x (t))

]
− f ? = O

(∑
k

log t

tmin(αk ,1−αk )

)
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Outline

1 Discretizing the Replicator ODE

2 Accelerated Mirror Descent
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First order optimization: from continuous to discrete time

Constrained convex optimization

minimize f (x)

subject to x ∈ X

f is convex differentiable, Lf smooth (i.e. ∇f is Lf Lipschitz).
X is convex closed.
First-order: can evaluate f (x) and ∇f (x).

Gradient descent O(1/k)
Mirror descent [9]
Dual Averaging [11] O(1/k)

Nesterov’s accelerated method [10] O(1/k2)

Goal: unified approach to derive these algorithms.
Design ODE in continuous time using Lyapunov argument.
Discretize.

[9]A. S. Nemirovsky and D. B. Yudin. Problem complexity and method efficiency in optimization.
Wiley-Interscience series in discrete mathematics. Wiley, 1983
[11]Y. Nesterov. Primal-dual subgradient methods for convex problems.
Mathematical Programming, 120(1):221–259, 2009
[10]Y. Nesterov. A method of solving a convex programming problem with convergence rate o (1/k2).
Soviet Mathematics Doklady, 27(2):372–376, 1983
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From Gradient Descent to Mirror Descent

Gradient descent is discretization of

Gradient descent ODE

Ẋ = −∇f (X )

Converges in O(1/t).

Proof idea: define D(X (t), x?) = 1
2‖X (t)− x?‖2.

Nemirovski and Yudin [9]
1 Start from function on the dual space

Dψ∗ (Z , z?) = ψ∗(Z)− ψ∗(z?)− 〈∇ψ∗(z?),Z − z?〉

2 Design dynamics to make it a Lyapunov function.

[9]A. S. Nemirovsky and D. B. Yudin. Problem complexity and method efficiency in optimization.
Wiley-Interscience series in discrete mathematics. Wiley, 1983
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From Gradient Descent to Mirror Descent

Gradient descent is discretization of

Gradient descent ODE

Ẋ = −∇f (X )

Converges in O(1/t).

Proof idea: define D(X (t), x?) = 1
2‖X (t)− x?‖2.

Nemirovski and Yudin [9]
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Dψ∗ (Z , z?) = ψ∗(Z)− ψ∗(z?)− 〈∇ψ∗(z?),Z − z?〉
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[9]A. S. Nemirovsky and D. B. Yudin. Problem complexity and method efficiency in optimization.
Wiley-Interscience series in discrete mathematics. Wiley, 1983
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From Gradient Descent to Mirror Descent

Mirror descent ODE {
Ż = −∇f (X )

X = ∇ψ∗(Z)

Converges in O(1/t).

E E∗

X

∇ψ∗

∂ψ

Z(t)

−∇f(X(t))X(t)

Figure: Illustration of Mirror Descent

ψ∗ is defined and differentiable on E∗, ∇ψ∗ maps E∗ to X . More on ∇ψ∗
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An ODE interpretation of Nesterov’s method

Su et al. [14]: for unconstrained problems
1 Nesterov’s method is discretization of

Ẍ +
r + 1
t

Ẋ +∇f (X ) = 0

2 Proved convergence at O(1/t2) rate. Argument: Lyapunov function

t2

r
(f (X )− f ?) +

r

2
‖X +

t

r
Ẋ − x?‖22

[14]W. Su, S. Boyd, and E. Candes. A differential equation for modeling nesterov’s accelerated gradient
method: Theory and insights.
In NIPS, 2014



16/32

Discretizing the Replicator ODE Accelerated Mirror Descent References

An ODE interpretation of Nesterov’s method

Su et al. [14]: for unconstrained problems
1 Nesterov’s method is discretization of
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Accelerated Mirror Descent in continuous time

We start from a Lyapunov function [7]

V (X ,Z , t) =
t2

r2
(f (X (t))− f ?) + Dψ∗ (Z(t), z?)

r ≥ 2, a parameter, Z ∈ E∗, z? its value at equilibrium.

AMD ODE {
Ż = − t

r
∇f (X ),

Ẋ = r
t
(∇ψ∗(Z)− X ),

(1)

If (X ,Z) is a solution to ODE (1), then V is a Lyapunov function.

Consequence: convergence rate

f (X (t))− f ? ≤ r2Dψ∗ (z0, z?)

t2

Proof: f (X (t))− f ? ≤ r2V (X (t),Z(t),t)
t2 ≤ rV (x0,z0,0)

t2 =
r2Dψ∗ (z0,z

?)

t2

[7]W. Krichene, A. Bayen, and P. Bartlett. Accelerated mirror descent in continuous and discrete time.
In 29th Annual Conference on Neural Information Processing Systems (NIPS), Montreal, Canada, 2015
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Averaging Interpretation

{
Ż = − t

r
∇f (X ),

Ẋ = r
t
(∇ψ∗(Z)− X ),

Averaging interpretation

Second equation equivalent to

X (t) =

∫ t
0 w(τ)∇ψ∗(Z(τ))dτ∫ t

0 w(τ)dτ

with w(τ) = τ r−1.

E E∗

X

∇ψ∗

∂ψ

Z(t) − t
r
∇f(X(t))

X(t)

Figure: Averaging interpretation: Z evolves in
E∗, X is a weighted average of the mirrored
trajectory ∇ψ∗(Z).

General averaging[8]

If W (t) =
∫ t
0 w(τ)dτ , and w

W
≥ 2

t
, then V is Lyapunov under

Ż = − w

W

t2

r2
∇f (X )

[8]W. Krichene, A. Bayen, and P. Bartlett. A Lyapunov approach to first-order methods for convex
optimization, in continuous and discrete time.
SIAM Journal on Optimization (SIOPT), submitted, December 2015
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Example: accelerated entropic descent on the simplex

Suppose the feasible set is X = ∆n = {x ∈ Rn
+ :
∑

i xi = 1}.

ψ(x) =
∑
i

xi ln xi + δ(x |∆), ψ∗(z) = ln
∑
i

ezi , ∇ψ∗(z)i =
ezi∑
i e

zi
,

Accelerated replicator ODE
˙̃Zi = Z̃i

(〈
Z̃ ,∇f (X )

〉
−∇i f (X )

)
X =

∫ t
0 τ

r−1Z̃(τ)dτ∫ t
0 τ

r−1dτ
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Numerical Example

Figure: Accelerated entropic descent on a quadratic on the simplex.
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Damped oscillator interpretation

Damped nonlinear oscillator

Accelerated mirror descent ODE is equivalent to

Ẍ +
r + 1
t

Ẋ = −∇2ψ∗(Z)∇f (X )

Special case: Ẍ + r+1
t

Ẋ = −∇f (X )

r+1
t

Ẋ : vanishing friction term.
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Ẍ +
r + 1
t
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Effect of the parameter r

Ẍ +
r + 1
t

Ẋ = −∇2ψ∗(Z)∇f (X )

Figure: Effect of the parameter r ∈ [2, 50].
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Effect of ∇2ψ∗(Z )

Ẍ +
r + 1
t

Ẋ = −∇2ψ∗(Z)∇f (X )

Figure: Flow field x 7→ ∇2ψ∗(Z(t))∇f (x), along the solution trajectory Z
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Existence and uniqueness of the solution

{
Ż = − t

r
∇f (X ),

Ẋ = r
t
(∇ψ∗(Z)− X ),

Solution

Suppose ∇f and ∇ψ∗ are Lipschitz. Then ODE system (1) has a unique solution
defined on [0,+∞), and the solution remains in X .

Proof sketch: Would like to invoke Cauchy-Lipschitz theorem (Picard-Lindelöf), but
singularity at 0.

1 Define family of “smoothed” ODEs:{
Ż = − t

r
∇f (X ),

Ẋ = r
max(t,δ)

(∇ψ∗(Z)− X ),

2 Extract a converging subsequence. Its limit is a solution to (1).
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Ẋ = r
max(t,δ)

(∇ψ∗(Z)− X ),

2 Extract a converging subsequence. Its limit is a solution to (1).



24/32

Discretizing the Replicator ODE Accelerated Mirror Descent References

Existence and uniqueness of the solution

{
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Discretization

Time correspondence: t = k
√
s, for a step size s. First attempt:{

Ż = − t
r
∇f (X ),

Ẋ = r
t
(∇ψ∗(Z)− X ),


z(k+1)−z(k)
√
s

= − k
√
s

r
∇f (x(k))

x(k+1)−x(k)
√
s

= r
k
√
s

(
∇ψ∗(z(k+1))− x(k+1)

)
.

Candidate Lyapunov function:

E (k) = V (x(k), z(k), k
√
s).
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Discrete AMD algorithm.

Accelerated mirror descent with distance generating function ψ∗, regularizer R

1: Initialize x̃(0) = x0, z̃(0) = x0
2: for k ∈ N do
3: z̃(k+1) = argminz̃∈X

kr
s

〈
∇f (x(k)), z̃

〉
+ Dψ(z̃, x(k))

4: x̃(k+1) = argminx̃∈X γs
〈
∇f (x(k)), x̃

〉
+ R(x̃ , x(k))

5: x(k+1) = λk z̃
(k+1) + (1− λk )x̃(k+1), with λk = r

r+k
.

6: end for

R regularizer function, assumed strongly convex and smooth.

Modified scheme is consistent with the ODE. Idea: x̃ (k) = x (k) +O(s).

z(k)

z(k+1)

−kr
s
∇f(x(k))

x(k)

z̃(k+1)

x̃(k+1)

x(k+1)

E E∗

X

∇ψ∗

∂ψ

Figure: Illustration of the discrete AMD algorithm.
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Convergence rate

Convergence rate

If γ ≥ Lf Lψ∗ and s ≤ `R
2Lf γ

, then

f (x̃(k))− f ? ≤ C/k2,

where C =
r2Dψ∗ (z0,z

?)

s
+ f (x0)− f ?.

Proof: Ẽ (k) = V (x̃(k), z(k), k
√
s) is a Lyapunov function.
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Restarting

Restart the algorithm when a certain condition is met.

Gradient restart:
〈
x(k+1) − x(k),∇f (x(k))

〉
> 0

Speed restart: ‖x(k+1) − x(k)‖ < ‖x(k) − x(k−1)‖

Algorithm 1 Accelerated mirror descent with restart

1: Initialize l = 0, x̃ (0) = z̃(0) = x0.
2: for k ∈ N do
3: z̃(k+1) = arg minz̃∈X

l r
s

〈
∇f (x (k)), z̃

〉
+ Dψ(z̃, x (k))

4: x̃ (k+1) = arg minx̃∈X γs
〈
∇f (x (k)), x̃

〉
+ R(x̃, x (k))

5: x (k+1) = λl z̃
(k+1) + (1− λl )x̃

(k+1), with λl = r
r+l .

6: l ← l + 1
7: if Restart condition then
8: z̃(k+1) ← x (k+1), l ← 0
9: end if

10: end for
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Illustration of restarting

Figure: Illustration of restarting
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Example with a weakly convex function

Figure: Example with a weakly convex function. The black segment shows arg min f . Observe
that each method converges to some point x? ∈ arg min f .
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Dynamical systems approach to optimization

Paradigm

Design ODE in continuous-time.

Streamline the discretization.

For practitioners: Use off-the-shelf numerical methods to discretize the ODE.

Develop the theory:

Rigorous analysis of effect of r . Adaptive r?

Study restarting heuristics.

Monotone operators.

Composite optimization
min f (x) + g(x)

x ∈ X
where ∇f is Lipschitz and g is a general convex function.
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Thank you!
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AREP convergence proof

Back

Affine interpolation of x(t) is an asymptotic pseudo trajectory.

x(0)
Φt0(x(0))

x(1)
Φtk−2

(x(k−2))

x(k−1)

x(k)

Φtk−1
(x(k−1))

The set of limit points of an APT is internally chain transitive ICT.

If Γ is compact invariant, and has a Lyapunov function f with int f (Γ) = ∅, then
∀L ICT, Γ, and f is constant on L.

In particular, f is constant on L(x(t)), so f (x(t)) converges.
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More on the mirror operator ∇ψ∗

Back to mirror descent

Consider a pair of closed conjugate convex functions ψ,ψ∗

ψ : X → R

ψ∗ : E∗ → R, ψ∗(z) = supx∈X 〈z, x〉 − ψ(x)

∂ψ∗(z) = argmaxx∈X 〈z, x〉 − ψ(x)
(so ∂ψ∗ naturally maps into X ).

Mirror operator

If ψ : X → R is convex, closed, (essentially) strongly convex, such that epi f contains
no non-vertical half-lines, then ψ∗ is finite differentiable on E∗ and ∇ψ∗ : E∗ → X .

[12]R. Rockafellar. Convex Analysis.
Princeton University Press, 1997
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[12]R. Rockafellar. Convex Analysis.
Princeton University Press, 1997
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More on the mirror operator ∇ψ∗

Back to mirror descent

Consider a pair of closed conjugate convex functions ψ,ψ∗

ψ : X → R
ψ∗ : E∗ → R, ψ∗(z) = supx∈X 〈z, x〉 − ψ(x)

∂ψ∗(z) = argmaxx∈X 〈z, x〉 − ψ(x)
(so ∂ψ∗ naturally maps into X ).

Mirror operator

If ψ : X → R is convex, closed, (essentially) strongly convex, such that epi f contains
no non-vertical half-lines, then ψ∗ is finite differentiable on E∗ and ∇ψ∗ : E∗ → X .

[12]R. Rockafellar. Convex Analysis.
Princeton University Press, 1997
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The mirror operator ∇ψ∗

Back to mirror descent

ψ(x) =

{
x2/2 if |x| ≤ 1

|x| − 1/2 if |x| ≥ 1
epiψ ψ∗(z) =

{
z2/2 if |z| ≤ 1

+∞ if |z| ≥ 1

Figure: Example of dual distance generating functions ψ and ψ∗.
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Application to load balancing

1

0

Load balancers

Machines

Figure: Load balancing problem.

Modeled using a routing game.

Can be solved using AMD.

Acceleration leads to oscillation, undesirable.

Use restarting heuristics to detect and alleviate oscillations.
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