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Learning dynamics in the routing game

@ Routing games model congestion on networks. Concise and elegant theory.

@ Nash equilibrium quantifies efficiency of network in steady state.
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System does not operate at equilibrium. Beyond equilibria, we need to
understand decision dynamics (learning).

@ A realistic model for decision dynamics is essential for prediction, optimal
control.
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Learning dynamics in the routing game

@ Routing games model congestion on networks. Concise and elegant theory.

@ Nash equilibrium quantifies efficiency of network in steady state.

System does not operate at equilibrium. Beyond equilibria, we need to
understand decision dynamics (learning).

@ A realistic model for decision dynamics is essential for prediction, optimal

control.
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Desiderata

Learning dynamics should be

o Realistic in terms of information requirements, computational complexity.
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o Consistent with the full information Nash equilibrium.
x5 x*

Convergence rates?
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Desiderata

Learning dynamics should be
o Realistic in terms of information requirements, computational complexity.

o Consistent with the full information Nash equilibrium.
x5 x*

Convergence rates?
@ Robust to stochastic perturbations.

o Observation noise
o (Bandit feedback)
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Interaction of K decision makers

Decision maker k faces a sequential decision problem

At iteration t

(1) chooses probability distribution XXZ over action set Ay
(2) discovers a loss function EE‘?k s A — [0,1]

(3) updates distribution

Environment

learning algorithm outcome
(t+1) _ (1) (&) (t)
Xp, = U (XAngk) éAk
Agent k

Figure: Sequential decision problem.

References
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Interaction of K decision makers

Decision maker k faces a sequential decision problem
At iteration t
(1) chooses probability distribution XXZ

(2) discovers a loss function Esi)k s A — [0,1]
(3) updates distribution

over action set Ay

Environment

Other agents
learning algorithm outcome
ng'l) _ “(ng’e(f?k) (,"Ak(xfﬁ,..‘,xfil)
Agent k

Figure: Sequential decision problem.

Loss of agent k affected by strategies of other agents.

Does not know(t)his func(ti)on, only observes its value.
. t t
Write x(® = ( dar s Xy )
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Examples of decentralized decision makers

Routing game
o Player drives from source to destination node
o Chooses path from Ay

@ Mass of players on each edge determines cost on that edge.

Figure: Routing game

References
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Routing game
o Player drives from source to destination node
o Chooses path from Ay

@ Mass of players on each edge determines cost on that edge.

Figure: Routing game
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Online learning model

Related problems

0000

Online Learning Model

1: for t € N do ©
2: Play p ~ XAy

3: Discover ZS‘)
k
4: Update
(t+1) _ (1) (1)
Xa T (X-Ak’e-Ak)
5: end for
B e AL
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2: Play p ~ )2";“
. t
3: Discover £
4: Update
(t+1) _ (1) (1)
Xay = Uk (XAk’e-Ak
5: end for
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Online Learning Model

1: for t € N do ©
2: Play p ~ )xk

. t
3: Discover ZAk
4: Update

(t+1) _ (1)
Xa, o = U (XAk

(t)
e

(t)

Sample p ~ Xy Discover Zg)li .
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Online learning model
Online Learning Model
1: for t € N do ©
2: Play p ~ )xk
. t
3: Discover £
4: Update
(t+1) _ (1) (1)
Xa T (XAk’e-Ak
5: end for
(t) . (t) (t+1)
Sample EN, X;’“l Discover Zvﬂlﬁ . Update XA]L
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Online learning model
Online Learning Model
1: for t € N do ©
2: Play p ~ XAy
3: Discover ZS\)‘(
4: Update
(t+1) _ (1) y(t)
Xay = Uk (X-Ak’e-Ak
5: end for

Sample p ~ X.(At)l

Main problem

Define class of dynamics C such that

ue € C Vk = x®

— X
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A brief review

Continuous-time:
Discrete time:
@ Hannan consistency: [10]
@ Hedge algorithm for two-player games: [9]
@ Regret based algorithms: [11]
@ Online learning in games: [7]
o Potential games: [19]
Specifically to the routing game

[10]James Hannan. Approximation to Bayes risk in repeated plays.

Contributions to the Theory of Games, 3:97-139, 1957

[9]Yoav Freund and Robert E Schapire. Adaptive game playing using multiplicative weights.
Games and Economic Behavior, 29(1):79-103, 1999

[11]Sergiu Hart and Andreu Mas-Colell. A general class of adaptive strategies.

Journal of Economic Theory, 98(1):26 — 54, 2001

[7]Nicold Cesa-Bianchi and Gabor Lugosi. Prediction, learning, and games.

Cambridge University Press, 2006

[19]Jason R Marden, Giirdal Arslan, and Jeff S Shamma. Joint strategy fictitious play with
inertia for potential games.

Automatic Control, IEEE Transactions on, 54(2):208-220, 2009

[4]Avrim Blum, Eyal Even-Dar, and Katrina Ligett. Routing without regret: on convergence to
nash equilibria of regret-minimizing algorithms in routing games.

In Proceedings of the twenty-fifth annual ACM symposium on Principles of distributed
computing, PODC '06, pages 45-52, New York, NY, USA, 2006. ACM
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This talk

@ Overview of some techniques for design and analysis of learning dynamics.

o Formulated for routing games. Extend to other classes of games.
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© Routing Examples

@ Related problems
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Nash equilibria, and the Rosenthal potential

Write
X = (Xag, .-y Xax) € AAT x - x AAK
€(x) = (Laz (), -, Lag (X))

Nash equilibrium

x* is a Nash equilibrium if
(0(x*),x — x*) >0 Vx & Vk,Vxa,, (€a,(x*), x4, — xa,) >0

In words, for all k, paths in the support of x7, have minimal loss.
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Nash equilibria, and the Rosenthal potential

Write
X = (XAq,---

Ux) = (Lay (%), -, Lan (X))

Nash equilibrium

,XAK)GAAl X oo X AR

Related problems
0000

References

Population 1

x* is a Nash equilibrium

if

(0(x*),x — x*) >0 Vx & Vk,Vxa,, (€a,(x*), x4, — xa,) >0

In words, for all k, paths in the support of x7, have minimal loss.

Mass distributions Exf;)

k

— path po = (vo, v

-~ - path ps = (vo,v1)

path p; = (vo,v4, U5, v1)

100

Path losses E £, (x")

—path po = (v
|- pathpy =
-~ -path po = (vg,v1)

Figure: Population distributions and noisy path losses
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Nash equilibria, and the Rosenthal potential

Rosenthal potential

If convex such that

Then the set of Nash equilibria is

= arg min f(x)
XEAAL X .. x AAK
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Nash equilibria, and the Rosenthal potential

Rosenthal potential

If convex such that

Then the set of Nash equilibria is

= arg min f(x)
XEAAL X .. x AAK

Nash condition & first order optimality
Vx, (0(x* )y x —x*) >0 Vx, (VF(x*),x = x*) >0
T B \\\\




Technique 1: Regret analysis
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Regret analysis

Cumulative regret
Rﬁi = sup Z <XSZ —xAk,ZAk(X(t))>
XAkEA‘Ak <t

(t)
R
“Online” optimality condition. Sublinear if lim sup, % <.

Convergence of averages

[Vk, Rf;i is sublinear] = x5 x*
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Convergence of x(t) Vs. convergence of x(t)
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Routing game example

Related problems
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—— path py = (o, vs,v1)
--- path py o
- = -path py = (vg,v1)

100

—— path po = (vo,vs,v1)
path py s
path py = (v, v1)
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Figure: Population distributions
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Convergence of x(t) Vs. convergence of x(t)

Routing game example

(®) z(t)
Path losses £.4, (x')) La (xV)
— path pg = 2 — path po 1
— - == path p; e - == path p;
c
.Q g
5%
ReR-
3
o
&
051 L L L L L L L L L il
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;
of
(qV]
= 1.5
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=) )
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3 1
o
o
a- 0.5 L L L L L L L L L il
0 10 20 30 40 50 60 70 8 90 100
T T

Figure: Path losses
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From convergence of x(!) to convergence of x(t)

| probl. References

Sufficient condition for (x(), — X*

f(x®) eventually decreasing
4
F(xD) — £
I

x5 x*




Stochastic approximation

Technique 2: Stochastic approximation

14/36



Related problems

Routing Examples
0000

Convergence of agent dynamics
00000

Introduction
0000080000000 0000

00000

Stochastic approximation

Idea:
o View the learning dynamics as a discretization of an ODE.

@ Study convergence of ODE.

o Relate convergence of discrete algorithm to convergence of ODE.

0 T M + N2
O O——O—

Figure: Underlying continuous time

References



Introduction Convergence of agent dy g Related problems References
00000 O00000@0000000000 00000 0000

Example: the Hedge algorithm

Hedge algorithm

Update the distribution according to observed loss

_ k1)
Xa(t+1) ¢ X;t)e s L5

[7]Nicoldé Cesa-Bianchi and Gabor Lugosi. Prediction, learning, and games.

Cambridge University Press, 2006

[1]Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method: a
meta-algorithm and applications.

Theory of Computing, 8(1):121-164, 2012

[13]Jyrki Kivinen and Manfred K. Warmuth. Exponentiated gradient versus gradient descent
for linear predictors.

Information and Computation, 132(1):1 — 63, 1997

[2]Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient methods
for convex optimization.

Oper. Res. Lett., 31(3):167-175, May 2003
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Example: the Hedge algorithm

Hedge algorithm

Update the distribution according to observed loss

_ k1)
Xa(t+1) ¢ th)e s L5

Also known as
@ Exponentially weighted average forecaster [7].

[7]Nicoldé Cesa-Bianchi and Gabor Lugosi. Prediction, learning, and games.

Cambridge University Press, 2006

[1]Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method: a
meta-algorithm and applications.

Theory of Computing, 8(1):121-164, 2012

[13]Jyrki Kivinen and Manfred K. Warmuth. Exponentiated gradient versus gradient descent
for linear predictors.

Information and Computation, 132(1):1 — 63, 1997

[2]Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient methods

for convex optimization.
Oper. Res. Lett., 31(3):167-175, May 2003
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Example: the Hedge algorithm

Hedge algorithm

Update the distribution according to observed loss

_ k1)
Xa(t+1) ¢ th)e s L5

Also known as
@ Exponentially weighted average forecaster [7].
@ Multiplicative weights update [1].

[7]Nicoldé Cesa-Bianchi and Gabor Lugosi. Prediction, learning, and games.

Cambridge University Press, 2006

[1]Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method: a
meta-algorithm and applications.

Theory of Computing, 8(1):121-164, 2012

[13]Jyrki Kivinen and Manfred K. Warmuth. Exponentiated gradient versus gradient descent
for linear predictors.

Information and Computation, 132(1):1 — 63, 1997

[2]Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient methods

for convex optimization.
Oper. Res. Lett., 31(3):167-175, May 2003
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Example: the Hedge algorithm

Hedge algorithm

Update the distribution according to observed loss

_ k1)
Xa(t+1) ¢ th)e s L5

Also known as
@ Exponentially weighted average forecaster [7].
@ Multiplicative weights update [1].
@ Exponentiated gradient descent [13].

[7]Nicoldé Cesa-Bianchi and Gabor Lugosi. Prediction, learning, and games.

Cambridge University Press, 2006

[1]Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method: a
meta-algorithm and applications.

Theory of Computing, 8(1):121-164, 2012

[13]Jyrki Kivinen and Manfred K. Warmuth. Exponentiated gradient versus gradient descent
for linear predictors.

Information and Computation, 132(1):1 — 63, 1997

[2]Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient methods
for convex optimization.

Oper. Res. Lett., 31(3):167-175, May 2003
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Example: the Hedge algorithm

Hedge algorithm

Update the distribution according to observed loss

_ k1)
Xa(t+1) ¢ th)e s L5

Also known as

@ Exponentially weighted average forecaster [7].
Multiplicative weights update [1].
Exponentiated gradient descent [13].

Entropic descent [2].

[7]Nicoldé Cesa-Bianchi and Gabor Lugosi. Prediction, learning, and games.

Cambridge University Press, 2006

[1]Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method: a
meta-algorithm and applications.

Theory of Computing, 8(1):121-164, 2012

[13]Jyrki Kivinen and Manfred K. Warmuth. Exponentiated gradient versus gradient descent
for linear predictors.

Information and Computation, 132(1):1 — 63, 1997

[2]Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient methods
for convex optimization.

Oper. Res. Lett., 31(3):167-175, May 2003
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Example: the Hedge algorithm

Hedge algorithm

Update the distribution according to observed loss

_ k1)
Xa(t+1) ¢ th)e s L5

Also known as

@ Exponentially weighted average forecaster [7].
Multiplicative weights update [1].
Exponentiated gradient descent [13].
Entropic descent [2].
Log-linear learning [5], [18]

[7]Nicoldé Cesa-Bianchi and Gabor Lugosi. Prediction, learning, and games.

Cambridge University Press, 2006

[1]Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method: a
meta-algorithm and applications.

Theory of Computing, 8(1):121-164, 2012

[13]Jyrki Kivinen and Manfred K. Warmuth. Exponentiated gradient versus gradient descent
for linear predictors.

Information and Computation, 132(1):1 — 63, 1997

[2]Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient methods
for convex optimization.

Oper. Res. Lett., 31(3):167-175, May 2003
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The replicator ODE

(t)
In Hedge x,ng) o x,(,t)e_”fkept , take n; — 0.

Replicator equation [27]

Va e A, jit = x ({4, (x), Xa,) — £2(x)) (1)

[27] Jérgen W Weibull. Evolutionary game theory.
MIT press, 1997

[8] Simon Fischer and Berthold Vécking. On the evolution of selfish routing.
In Algorithms—ESA 2004, pages 323—-334. Springer, 2004
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The replicator ODE

(t)
In Hedge x,ng) x x,(,t)e_”fkept , take n; — 0.

Replicator equation [27]

Va e A, jit = x ({4, (x), Xa,) — £2(x)) (1)

Theorem: [8]

Every solution of the ODE (1) converges to the set of its stationary points.

[27] Jérgen W Weibull. Evolutionary game theory.
MIT press, 1997

[8] Simon Fischer and Berthold Vécking. On the evolution of selfish routing.
In Algorithms—ESA 2004, pages 323—-334. Springer, 2004
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AREP dynamics: Approximate REPlicator

Discretization of the continuous-time replicator dynamics

X§t+1) - X(t) = 77tX (<£A (X ) X2> - Za(x(t))) + e U.SHI)

o (UW),>1 perturbations that satisfy for all T > 0,

. (t+1)
lim E Nt Uil =0
T100 7 Er 1 m<T =y

o 1), discretization time steps.

q
(a sufficient condition is that 3¢ > 2: sup, E||U(M||9 < co and 3 ni+2 Moo)

[3] Michel Benaim. Dynamics of stochastic approximation algorithms.
In Séminaire de probabilités XXXIII, pages 1-68. Springer, 1999
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Convergence to Nash equilibria

| probl. References

Theorem [16]

Under AREP updates, if n: | 0 and > 1 = oo, then

x® - x*

o Affine interpolation of x() is an asymptotic pseudo trajectory.

@ Use f as a Lyapunov function.

[16] Walid Krichene, Benjamin Drighés, and Alexandre Bayen. Learning nash equilibria in
congestion games.
SIAM Journal on Control and Optimization (SICON), to appear, 2014



Introduction Convergence of agent dy i Routing E I Rel. | probl. References

g
00000 00000000 0®0000000 00000 0000

Convergence to Nash equilibria

Theorem [16]

Under AREP updates, if n: | 0 and > 1 = oo, then

x® - x*

o Affine interpolation of x() is an asymptotic pseudo trajectory.

@ Use f as a Lyapunov function.

However, No convergence rates.

[16] Walid Krichene, Benjamin Drighés, and Alexandre Bayen. Learning nash equilibria in

congestion games.
SIAM Journal on Control and Optimization (SICON), to appear, 2014
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Stochastic convex optimization

Technique 3: (Stochastic) convex optimization
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Stochastic convex optimization

Idea:
@ View the learning dynamics as a distributed algorithm to minimize f.

o (More generally: distributed algorithm to find zero of a monotone
operator).
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Stochastic convex optimization

Idea:
@ View the learning dynamics as a distributed algorithm to minimize f.

o (More generally: distributed algorithm to find zero of a monotone
operator).

o Allows us to analyze convergence rates.
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Stochastic convex optimization

Idea:
@ View the learning dynamics as a distributed algorithm to minimize f.

o (More generally: distributed algorithm to find zero of a monotone
operator).

o Allows us to analyze convergence rates.

Here:
Class of distributed optimization methods: stochastic mirror descent.
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Stochastic Mirror Descent

minimize  f(x) convex function

subject to  x € X CR? convex, compact set

[21]A. S. Nemirovsky and D. B. Yudin. Problem complexity and method efficiency in
optimization.

Wiley-Interscience series in discrete mathematics. Wiley, 1983

[20]A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation
approach to stochastic programming.

SIAM Journal on Optimization, 19(4):1574—-1609, 2009
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Stochastic Mirror Descent

minimize  f(x) convex function

subject to  x € X CRY convex, compact set

Algorithm 2 MD Method with learning rates (7;)

1. for t € N do
2. observe () € 9f (x)

. (t+1) — i (t) 1 (®)
3 X = arg min <€ 7x>—&— oDy (x, )

4: end for
— f(@)
i . - f(@®) + (00 x — 2®)
@ 7);: learning rate @) + (60,5 — 20) + LDy (z,2)
"] Dw:

[21]A. S. Nemirovsky and D. B. Yudin. Problem complexity and method efficiency in
optimization.

Wiley-Interscience series in discrete mathematics. Wiley, 1983

[20]A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation
approach to stochastic programming.

SIAM Journal on Optimization, 19(4):1574—-1609, 2009
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Stochastic Mirror Descent

minimize  f(x) convex function

subject to  x € X CRY convex, compact set

Algorithm 2 MD Method with learning rates (7;)

1. for t € N do
2:  observe Esf\)k €, F(x)

(t+1) _ ; (t) 1 (t)
3 Xy, _argxén/{r:\k <€Ak,x>+ﬁDw(x,xAk)
4: end for
@ 7 learning rate f@) + (0,5 — o) + 1D,y (z,20)
o Dw:

[21]A. S. Nemirovsky and D. B. Yudin. Problem complexity and method efficiency in
optimization.

Wiley-Interscience series in discrete mathematics. Wiley, 1983

[20]A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation
approach to stochastic programming.

SIAM Journal on Optimization, 19(4):1574—-1609, 2009
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Stochastic Mirror Descent

minimize f(x) convex function

subjectto xe€ X C RY  convex, compact set

Algorithm 2 SMD Method with learning rates (7;)

1: for t € Ndo
2. observe (Sf‘)k with E [EEZU}}A} € da, f(x1)

. (t+1) _ . () 1 (t)
3 Xy, = argxén)ézk <(,Ak,x> + o Dy, (x,x}4))
4: end for

@ 7;: learning rate

o Dy:

[21]A. S. Nemirovsky and D. B. Yudin. Problem complexity and method efficiency in
optimization.

Wiley-Interscience series in discrete mathematics. Wiley, 1983

[20]A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation
approach to stochastic programming.

SIAM Journal on Optimization, 19(4):1574—-1609, 2009
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Deterministic version: a true descent

Under mirror descent, f(x()) — f*.

A true descent [17]

If Vf is Lipschitz, and 7n: | 0, then eventually,
f(X(t+1)) < f(x(t))
Then under mirror descent with Y~ 7: = oo,

()
Yocenr 1 1> S @) + (0,3 — 20

: -+ % aF ? = f @) (e — )y ¢ ”%D‘,(J:‘z(”)

fM%—ﬁ:O(

Figure: Mirror Descent iteration
with decreasing 7:

[17] Walid Krichene, Syrine Krichene, and Alexandre Bayen. Convergence of mirror descent
dynamics.
In European Control Conference (ECC), 2015
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Deterministic version: a true descent

Under mirror descent, f(x()) — f*.

A true descent [17]

If Vf is Lipschitz, and 7n: | 0, then eventually,
f(X(t+1)) < f(x(t))

Then under mirror descent with Y~ 7: = oo,

— i@
Z n 1 1 - fa®) 4+ (O, — 2 ®)
fxW)—fr=0(=2" 4 — 4= @)+ (00— 0) + 2Dy (aa)
t tne |t D

Figure: Mirror Descent iteration
with decreasing 7:

[17] Walid Krichene, Syrine Krichene, and Alexandre Bayen. Convergence of mirror descent
dynamics.
In European Control Conference (ECC), 2015



Introduction Convergence of agent dy g Related problems References
00000 000000000000 e0000 00000 0000

Deterministic version: a true descent

Under mirror descent, f(x{!)) — f*.

A true descent [17]

If V£ is Lipschitz, and n; | 0, then eventually,

Jat)

F(x(D) < F(x(®) P
Then under mirror descent with > n: = oo, -
—f(@)
Yo 11 o @)+ (00,2 =2 0)
f(x)—f* =0 ( Tft ~ + e @) 4 (O, x — a®) + LDy )

Figure: Mirror Descent iteration
with decreasing 7¢

[17] Walid Krichene, Syrine Krichene, and Alexandre Bayen. Convergence of mirror descent
dynamics.
In European Control Conference (ECC), 2015
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Stochastic version

Know: E[f(x(")] — f* [20] (more general averaging)

f Nt Convergence

Weakly convex t?,—kk, ax € (0,1) E {f(x(”)} —f*=0 (Zk %)

gmin(a 1

Strongly convex Zﬁ—gk, ak €(0,1] | E {D (x*, x f))] O(>, ™)

Figure: SMD convergence rates [15]

General algorithm: applications beyond distributed learning models. E.g. large
scale machine learning.

[20]A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation
approach to stochastic programming.

SIAM Journal on Optimization, 19(4):1574-1609, 2009

[21] A. S. Nemirovsky and D. B. Yudin. Problem complexity and method efficiency in
optimization.

Wiley-Interscience series in discrete mathematics. Wiley, 1983

[15] Syrine Krichene, Walid Krichene, Roy Dong, and Alexandre Bayen. Convergence of
heterogeneous distributed learning in stochastic routing games.
In 53rd Allerton Conference on Communication, Control and Computing, 2015
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Convergence

Main ingredient

. N
E[dr1/Fr-1] < dr = (7)) = £+ 22 B [|20|21 7, 1]

[22]H. Robbins and D. Siegmund. A convergence theorem for non negative almost
supermartingales and some applications.

Optimizing Methods in Statistics, 1971

[6]Léon Bottou. Online algorithms and stochastic approximations.

1998
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Convergence

Main ingredient

. N
E[dralFr-1] < o= (F(7) = £)+ 5L E (1002177

From here,

o Can show a.s. convergence x{!) — X* if S e =00 and 3.n? < oo

[22]H. Robbins and D. Siegmund. A convergence theorem for non negative almost
supermartingales and some applications.

Optimizing Methods in Statistics, 1971

[6]Léon Bottou. Online algorithms and stochastic approximations.

1998
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Convergence

Main ingredient

. N
E[dralFr-1] < o= (F(7) = £)+ 5L E (1002177

From here,

o Can show a.s. convergence x{!) — X* if S =00 and Y07 < oo
d- is an almost super martingale [22], [6]

[22]H. Robbins and D. Siegmund. A convergence theorem for non negative almost
supermartingales and some applications.

Optimizing Methods in Statistics, 1971

[6]Léon Bottou. Online algorithms and stochastic approximations.

1998
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Convergence

Main ingredient

. .
E[dralFr-1] < o= (F(7) = £)+ 5L E (1002177

From here,

o Can show a.s. convergence x{!) — X* if S =00 and Y07 < oo
d- is an almost super martingale [22], [6]

Deterministic version: d-41 < dr—a,+b-, > br < 0.

[22]H. Robbins and D. Siegmund. A convergence theorem for non negative almost
supermartingales and some applications.

Optimizing Methods in Statistics, 1971

[6]Léon Bottou. Online algorithms and stochastic approximations.

1998
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Convergence

@ To show convergence E [f(x(t))] — f*, generalize the technique of Shamir

et al. [25] (for SGD, o = 3).

Convergence of Distributed Stochastic Mirror Descent

For nf = ﬁy—kk, ak € (0,1),

. |
E[f(?)] - =0 Zk:m%gfﬂk)

Non-smooth, non-strongly convex.

[25]Ohad Shamir and Tong Zhang. Stochastic gradient descent for non-smooth optimization:
Convergence results and optimal averaging schemes.

In ICML, pages 71-79, 2013

[15] Syrine Krichene, Walid Krichene, Roy Dong, and Alexandre Bayen. Convergence of
heterogeneous distributed learning in stochastic routing games.

In 53rd Allerton Conference on Communication, Control and Computing, 2015
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Summary

o Regret analysis: convergence of z®
o Stochastic approximation: almost sure convergence of x{!)

@ Stochastic convex optimization: almost sure convergence,
E [f(x(t))} - E [Dw(x*,x(t))} — 0, convergence rates.

References
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Application to the routing game

Figure: A strongly convex example.

@ Centered Gaussian noise on edges.

@ Population 1: Hedge with } = ¢t~

o Population 2: Hedge with 7 = t™!

References
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Routing game with strongly convex potential

Population 1

Population 2

Convergence of agent dy

000000000000 00000

Mass distributions x

Related problems
0000

Path losses £, (x*))

References

L)

Zay

—
— path po = (v0,
N -~ path py = (

Moenen ] - =~ path py = (v9,v1)

10 20 30 40 50 60

T
path po

T
= (v0, 4, v6,01) | |
(vo, va,v5,01) |1

< s J|--- pathp; =
“ |- =~ path ps = (vo,v1)

e
— path py = (va,
path py = (v3, v, vs,
path ps = (v, v4, v, v3

—path ps =
path py =
path p; =

Figure: Population distributions and noisy path losses
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Routing game with strongly convex potential

0000

]074 Il L
10° 10! 10%

Figure: Distance to equilibrium.
For nf = efgtiﬁk ak € (0,1], E [Dy(x*, x(0)] = O(3, t—)



Routing game with weakly convex potential

:)e-e-e

Figure: A weakly convex example.
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Routing game with weakly convex potential

107° ¢

107
10°

Figure: Potential values.
[ I
For i, ax € (0,1), E[f(xW)] —f* =0 (Zk ngf%))
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Routing game with weakly convex potential

References

106 L Lo i L
10° 10! 102

Figure: Potential values.
For 2, ax € (0,1), E[f(x)] — £* = O () =)

ap,l—ay)
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Routing game with weakly convex potential

1072 ¢

1073 |

1074 ¢

E [f@))] - £

1075 |

1076 .
10° 10! 10?

Figure: Potential values.
6 I
For w, ax € (0,1), E[f(xW)] - f* =0 (Zk ng—aw)
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A routing experiment

o Interface for the routing game.

o Used to collect sequence of decisions x(*).

Path  Previous cost

Path0 0911

Path1 0915

Path2 0922

Pathd 0927

Pathd 0916

Paths 0910

Cumulative cost

17.921

20,056

20356

20.198

19.656

19.696

Show edge costs | Clear edge costs

Previous Cost Gumulative Cost

Weight

Previous Flows

Related problems

9000

@ | CumatFows | Provious Flows

0.407

0.008

0114

0.102

0.134

0.146

0.407

0.098

0114

0.102

0134

0.146

o Wi W2 W3 M4 WS

o mi W2 W3 ms WS

o w1

Figure: Interface for the routing game experiment.

w2

"
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Estimation of learning dynamics

Suppose we observe
@ A sequence of player decisions (X(t))
e The corresponding sequence of losses (¢*))

Can we fit a model of player dynamics?

References
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Estimation of learning dynamics

Suppose we observe
@ A sequence of player decisions (X(t))
e The corresponding sequence of losses (¢*))

Can we fit a model of player dynamics?
Simple model: estimate the learning rate in the mirror descent model

£ (1)) = arg min <E(t),x> + EDKL(X, x1)
xEAAK n
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Estimation of learning dynamics

Suppose we observe
@ A sequence of player decisions (X(t))
e The corresponding sequence of losses (¢*))

Can we fit a model of player dynamics?
Simple model: estimate the learning rate in the mirror descent model

£ (1)) = arg min <E(t),x> + EDKL(X, x1)
n

xeAAk

Then d(1) = D (x", 21 (1)) is a convex function. Can minimize it to

estimate 77,(5).



Estimation of learning dynamics

10!
A

-
<

Average run time (s)
g

X(\/
\V
L A7)

Figure: Learning rate estimates using the entropy model.
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Optimal routing with learning dynamics

Assume
o a central authority has control over a fraction of traffic: u(®)

o Rest of traffic follows learning dynamics: x(*)

T
minimize .7 (1) Z J(X(t), u(t))
t=1

subject to X = (x4 4O (x4 4y)

References



Optimal routing with learning dynamics

Figure: Los Angeles highway network.
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Optimal routing with learning dynamics

0 50 100 150 200 25C

Figure: Average delay without control (dashed), with full control (solid), and different
values of a.
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Summary
Environment
Other agents
learning algorithm outcome
i = (ol 40) L@l

Agent k

Figure: Coupled sequential decision problems.

@ Simple model for distributed learning.

@ Techniques for design / analysis of learning dynamics:
Regret analysis, stochastic approximation, stochastic optimization.

@ Related problems not covered here: Infinite action sets, accelerated dynamics.
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Summary

Environment

) ) Other agents
learning algorithm outcome

(t+1) RO 0] () (O
Ty, :u(xAk.(AJ Ca(Tgys e y)

Agent k

Figure: Coupled sequential decision problems.

Simple model for distributed learning.

Techniques for design / analysis of learning dynamics:
Regret analysis, stochastic approximation, stochastic optimization.

Related problems not covered here: Infinite action sets, accelerated dynamics.
Many brilliant visiting students / undergrads

Benjamin Drighés  Milena Suarez ~ Syrine Krichene Kiet Lam

Thank you!

eecs.berkeley.edu/~walid/
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s, (8) = ve (x5, 4, ()
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Oscillating example

t c(t
Path losses £.4, (x'*) L4, (D)
T T T T " " " r T T T T " " " "

20 — path po = (vo, 5. v1) 20 —path po = (t0,v5.01) | |

— |-| - - - path py = (vo, va, v5,v1) e - == path p; = (vo,v. i
( B - - -path py = (vo,v1)
c 15
.2
]
]
= 1
=3 R
L i
051 L L L Il L L L L L 1 05 L L Il L Il L L Il 1
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™ T
T T T T " " " : — T T T

2 —— path po = (vo, vs,v1) i 2n i

~ -~ path p1 = (0.4, v501) ' - path p1 = (v, 4, v5.1)
- - -path py = (v, v1) . - - -path py = (v, v1)

c - .
N
]
£
3
Q
o
a 0.5

Figure: Path losses



Oscillating example

Il Il Il Il
0 50 100 150 200 250 300
t

Figure: Potentials
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Oscillating example

P4

Ps

Figure: Trajectories in the simplex
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Regret [10]
Cumulative regret

Rfii = sup Z <Xf4tz 7XAk,£Ak(X(t))>
XAkEAAk <t

Convergence of averages

R(f)

1
¥k lim sup fk <0= g = ?me g

T<t

By convexity of f,

f %ZXW —fx) < %Z () = F(x)

<t <t
K p(t)
R
< EZ<£(X(t)),X(t) ,X> gt
t <t k=1 ¢

[10] James Hannan. Approximation to Bayes risk in repeated plays.
Contributions to the Theory of Games, 3:97-139, 1957
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AREP convergence proof

o Affine interpolation of x{) is an asymptotic pseudo trajectory.

@ The set of limit points of an APT is internally chain transitive ICT.

o If I' is compact invariant, and has a Lyapunov function f with
int f(F) =0, then VL ICT, T, and f is constant on L.

e In particular, f is constant on L(x(), so f(x(*)) converges.
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Bregman Divergence

Bregman Divergence

Strongly convex function )

Dy(x,y) = 9(x) —¢(y) — (V(y),x —y)

[2] Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient methods
for convex optimization.
Oper. Res. Lett., 31(3):167—-175, May 2003
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Bregman Divergence

Bregman Divergence

Strongly convex function )

Dy(x,y) = 9(x) —¢(y) — (V(y),x —y)

Example [2]: when X = A¢

o Y(x)=—H(x)=>,xalnx,
° D'L/)(Xay) = DKL(X»Y) = ZaXa In ;(7:
@ The MD update has closed form solution

_ (t)
) th)e Nt&a

A.k.a. Hedge algorithm, exponential
weights. Figure: KL divergence

[2] Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient methods

for convex optimization.
Oper. Res. Lett., 31(3):167—-175, May 2003



e X=A

o Di(x,y) =% xiIn 2t is unbounded.
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A bounded entropic divergence

e X=A
® Dxi(x,y) = Z,‘.j:l x; In ? is unbounded.

o Define Dig,(x,y) = 30, (xi +€)In ;'—j'_z

Proposition

@ Dy is ﬁ—strong/y convex w.r.t. | - [lx

o Djy is bounded by (1 + de)In 1<,
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Convergence of DMD

Theorem: Convergence of DMD [17]

Suppose f has L Lipschitz gradient. Then under the MD class with 7: | 0 and

> M = 00,
f(X(t)) -0 <Zr<tn7 i l n 1)
t Mt t
1 12 Dy
) =<y Ty T
<t 2 Mt
and

F(xXy —F* < %Z fx")—f +0 (%)

T<t
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Convergence in DSMD

Regret bound [15]

SMD method with (7¢). Vt2 > t; > 0 and F, -measurable x,

2 o E [Dy (x, x(t1)] 11 G &
T:ZHEKg( ), X7 — )] §7+D(———) ¥ S

Mty Ntz Mta

Strongly convex case:

E[Du(x" V)] < (1= 20n) BIDu(x" X)) + 5 17
P



Introduction Convergence of agent dy g Related pr
00000 0000000000000 0000 00000 0000

Convergence in DSMD

Weakly convex case:

Theorem [15]

Distributed SMD such that 7)” = %2 with a, € (0,1). Then

°p

t
(t) _ * < 1 1 2 ekG —_—
B[] -6 < (1+ X1 T (B o+ ey

i=1 ke A

N log t
- tmin(ming o, 1—maxy o)

1

)

Define S; = ,%1 > i]E[f(X(T))]
Show S;_ 1<S+(9t0‘ 1+%%)l’

i

[15] Syrine Krichene, Walid Krichene, Roy Dong, and Alexandre Bayen. Convergence of

heterogeneous distributed learning in stochastic routing games.
In 53rd Allerton Conference on Communication, Control and Computing, 2015
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Stochastic mirror descent in machine learning

Large scale learning:
N
minimize, E fi(x)
i=1

subjectto x e X
N very large. Gradient prohibitively expensive to compute exactly. Instead,
compute
2x) = Y VA()
i€z

with Z random subset of {1,..., N}.
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Accelerated MD

Gradient descent | mirror decent
. 1 1
(stochastic) weakly convex i 7
. 1 1
(stochastic) strongly convex H H
strongly convex, accelerated %2 ?
Figure: Convergence rates
Nesterov's accelerated method: adds a momentum term with a; = Z—;
t t—1 t—1
O = (D) pgp( D)
YO = 0 (9 = XDy
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Accelerated MD

@ A recent interpretation of Nesterov's accelerated method [26]:
discretization of the ODE

() + %)'((t) L VF(x(2) = 0
%(0)=0

[26] Weijie Su, Stephen Boyd, and Emmanuel Candes. A differential equation for modeling
nesterov’s accelerated gradient method: Theory and insights.
In NIPS, 2014

[21] A. S. Nemirovsky and D. B. Yudin. Problem complexity and method efficiency in

optimization.
Wiley-Interscience series in discrete mathematics. Wiley, 1983
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Accelerated MD

@ A recent interpretation of Nesterov's accelerated method [26]:
discretization of the ODE

() + %)’((t) L VF(x(2) = 0
%(0)=0

@ Mirror descent was motivated by continuous-time dynamics [21]:
Choose a Bregman divergence Dy (x(t), x*).

x(t) = =VF(V(x(1)))

Then Dy (x(t),x*) is a Lyapunov function for the dynamics.

[26] Weijie Su, Stephen Boyd, and Emmanuel Candes. A differential equation for modeling
nesterov’s accelerated gradient method: Theory and insights.
In NIPS, 2014

[21] A. S. Nemirovsky and D. B. Yudin. Problem complexity and method efficiency in
optimization.
Wiley-Interscience series in discrete mathematics. Wiley, 1983
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Accelerated MD

Lyapunov function proof
DDy (x(£), x7) = L ((x()) — (") — (Te(x"), x() — x°))
dr ¥ ' dt ’
= (T0lx(e) - Vo). ox(1))
(To(x(D) = V(") ~TFo(x) )
0

IN
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