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Online Learning over a �nite set

A decision maker faces a sequential problem:

Online decision problem over a �nite set {1, . . . ,N}.
1: for t ∈ N do

2: Decision maker chooses distribution x (t) over {1, . . .N}.
3: A loss vector `(t) ∈ [0,M]N is revealed.

4: The decision maker incurs expected loss
∑N

n=1 `
(t)
n x

(t)
n =

〈
x (t), `(t)

〉
5: end for
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Applications

Applications

• Convergence of player dynamics in games (Blackwell [1], Hannan[5])
{1, . . . ,N} is the set of actions.

• Machine Learning
{1, . . . ,N} is the training set.

• �Model-free� portfolio optimization (Cover [4], Blum [2])
{1, . . . ,N} is the set of stocks.

• Many others

[1]David Blackwell. An analog of the minimax theorem for vector payo�s.
Paci�c Journal of Mathematics, 6(1):1�8, 1956

[5]James Hannan. Approximation to Bayes risk in repeated plays.
Contributions to the Theory of Games, 3:97�139, 1957

[4]Thomas M. Cover. Universal portfolios.
Mathematical Finance, 1(1):1�29, 1991

[2]Avrim Blum and Adam Kalai. Universal portfolios with and without transaction costs.
Machine Learning, 35(3):193�205, 1999
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Learning on a continuum

�What if the action set is in�nite?�

Problem 1 Online decision problem on S .

1: for t ∈ N do

2: Decision maker chooses distribution x (t) over S .
3: A loss function `(t) : S → [0,M] is revealed.
4: The decision maker incurs expected loss〈

x (t), `(t)
〉

=

∫
S

x (t)(s)`(t)(s)λ(ds) = Es∼x(t) [`
(t)(s)]

5: end for

Regret

R(T )(x) =
T∑

t=1

〈
x (t), `(t)

〉
−

〈
x ,

T∑
t=1

`(t)

〉

sup
(`(t))

sup
x∈∆N

R(T )(x) = o(T )
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Results

Variant of this problem: Online optimization on convex sets.

Assumptions on `(t) convex α-exp-concave uniformly L-Lipschitz

Assumptions on S convex convex v-uniformly fat

Method
Gradient

(Zinkevich [8])

Hedge, ONS, FTAL

(Hazan et al. [6])

Hedge

(This talk)

Learning rates 1/
√
t α 1/

√
t

R(t) O
(√

t
)

O
(
log t

)
O
(√

t log t
)

Table: Some regret upper bounds for di�erent classes of losses.

[8]Martin Zinkevich. Online convex programming and generalized in�nitesimal gradient
ascent.
In ICML, pages 928�936, 2003

[6]Elad Hazan, Amit Agarwal, and Satyen Kale. Logarithmic regret algorithms for online
convex optimization.
Machine Learning, 69(2-3):169�192, 2007
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Hedge on a �nite set

Hedge algorithm with learning rates (ηt).

1: for t ∈ N do

2: Play x (t)

3: Reveal `(t) ∈ [0,M]N , call L(t) =
∑t
τ=1 `

(τ)

4: Update

x (t+1)
n ∝ e−ηt+1L

(t)
n

5: end for

One interpretation: instance of the dual averaging method [7]

x (t+1) ∈ argmin
x∈∆N

〈
L(t), x

〉
+

1

ηt+1

ψ(x)

with ψ(x) =
∑N

n=1 xn ln xn.

[7]Yurii Nesterov. Primal-dual subgradient methods for convex problems.
Mathematical Programming, 120(1):221�259, 2009
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Hedge on a �nite set

Basic Regret Bound

For all x ∈ ∆N ,

R(T )(x) ≤ M2

2

t∑
τ=1

ητ+1 +
ψ(x)

ηt+1

Take ηt = θt−
1
2 , then

∑t
1 ητ = O(

√
t) and 1

t
= O(

√
t)

It su�ces to bound ψ on ∆N .
When ψ(x) =

∑
i xi ln xi , ψ(x) ≤ lnN on ∆N . So

sup
x∈∆N

R(T )(x) ≤
(
M2θ

2
+

lnN

θ

)√
T
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Hedge on a continuum

Hedge on S with learning rates (ηt).

1: for t ∈ N do

2: Play ∼ x (t)

3: Reveal `(t) : S → [0,M]
4: Update

x (t+1)(s) ∝ x (0)(s)e−ηt+1L
(t)(s)

5: end for

One interpretation: instance of the dual averaging method

x (t+1) ∈ argmin
x∈∆(S)

〈
L(t), x

〉
+

1

ηt+1

ψ(x)

with

• Hilbert space H = L2(S), 〈`, x〉 =
∫
S
`(s)x(s)λ(ds)

• ∆(S) = {x ∈ L2(S) : x ≥ 0, ‖x‖1 = 1}
• ψ(x) =

∫
S
x(s) ln x(s)λ(ds)
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Hedge on a continuum

Basic Regret Bound

For all x ∈ ∆(S),

R(T )(x) ≤ M2

2

t∑
τ=1

ητ+1 +
ψ(x)

ηt+1

But ψ is unbounded on ∆(S).

Take x = 1
λ(A)

1A for some A ⊂ S . Then

ψ(x) =

∫
S

x(s) ln x(s)λ(ds) = ln
1

λ(A)

can be arbitrarily large for arbitrarily small A.
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Working around unbounded regularizers

Idea:

• Call s?t ∈ argmins∈S L
(t)(s) (L supposed continuous).

R(t)(x) =
t∑

τ=1

〈
`(τ), x (τ) − x

〉
≤

t∑
τ=1

〈
`(τ), x (τ) − δs?t

〉
=

t∑
τ=1

〈
`(τ), x (τ) − y

〉
+

t∑
τ=1

〈
`(τ), y − δs?t

〉
= R(t)(y) +

〈
L(t), y − δs?t

〉
• Take y ∈ Bt , set of distributions supported near s?t

Revised regret bound

sup
x∈∆(S)

R(t)(x) ≤ R(t)(y0) + sup
y∈Bt

〈
L(t), y − δs?t

〉
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Working around unbounded regularizers

Take y0 = 1
λ(At )

1At

sup
x∈∆(S)

R(t)(x) ≤ R(t)(y0) + sup
y∈Bt

〈
L(t), y − δs?t

〉

R(t)(y0)

≤
M2

2

t∑
τ=1

ητ+1 +
ψ(y0)

ηt+1

≤
M2

2

t∑
τ=1

ητ+1 +
1

ηt+1

ln
1

λ(At)

〈
L(t), y − δs?t

〉
=

∫
At

y(s)(L(t)(s)− L(t)(s?t ))λ(ds)

≤ Ltd(At)
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Uniformly fat sets

Uniform fatness

S is v -uniformly fat (w.r.t. the measure λ) if
∀s ∈ S , ∃ convex Ks ⊂ S , with s ∈ Ks and λ(Ks) ≥ v .

s

Ks

S
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Regret bound on uniformly fat sets

Final bound

sup
x∈∆(S)

R(t)(x) ≤ M2

2

t∑
τ=1

ητ+1 +
ln 1

v

ηt+1

+
n ln t

ηt+1

+ Ld(S)

Can optimize over ηt to get

sup
x∈∆(S)

R(t)(x) ≤ Ld(S) + M
√
t

√
n ln t + ln 1

v

2
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Beyond Hedge

Dual averaging with learning rates (ηt), strongly convex regularizer ψ

1: for t ∈ N do

2: Play x(t)

3: Discover `(t) ∈ H∗
4: Update

x(t+1) = arg min
x∈∆(S)

〈
L(t), x

〉
+

1

ηt+1

ψ(x) (1)

5: end for

• H is in�nite dimensional. Can we solve

min
x∈∆(S)

〈
L(t), x

〉
+

1

ηt+1

ψ(x)

• Can we obtain a sublinear regret bound?

sup
x∈∆(S)

R(t)(x) ≤ M2

2

t∑
τ=1

ητ+1 +
1

ηt+1

ψ(y) + Ltd(At)
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Numerical Example

Hedge algorithm on hollow cube in R3.

100 101 102 103

t

10-2

10-1

100

101

R
t /
t

log time-avg. cumulative regret

Quadratic

Affine

Polynomial

regret bound

Figure: Per-round regret
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Numerical Example

Hedge algorithm

• on set S

• with Lipschitz losses

• with ηt = Θ
√

ln t
t

100 101 102 103 104

t

10-1

100

101

R
t /
t

log time-avg. cumulative regret

ηt =0.13 
√

logt

t

bound

ηt =0.39 
√

logt

t

bound

Figure: E�ect of the learning rate ηt = θ
√

ln t
t
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Numerical Example

Figure: Evolution of the Hedge density


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}





18/19

The Problem Hedge on a Continuum Numerical Examples References

Conclusion

Summary

• Can learn on a continuum, when losses are Lipschitz and S has reasonable
geometry.

• Similar guarantee to learning on a cover, but do not need to maintain a
cover.

• Can generalize to the dual averaging method.

Extensions and open questions

• Bandit formulation, e.g. [3].

• Regret lower bound.

• When is it easy to sample from the Hedge distribution?

[3]Sébastien Bubeck, Rémi Munos, Gilles Stoltz, and Csaba Szepesvari. X-armed bandits.
Journal of Machine Learning Research (JMLR), 12(12):1587�1627, 2011
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Thank you

Thank you.

{krichene, balandat}@eecs.berkeley.edu
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Additional slides: Regret bound on uniformly fat sets

sup
x∈∆(S)

R(t)(x) ≤
M2

2

t∑
τ=1

ητ+1 +
1

ηt+1

ln
1

λ(At)
+ Ltd(At)

s?t

S

Ks?t

At

Figure: At = s?t + dt(Ks?t
− s?t ). Then λ(At) ≥ dn

t v and d(At) ≤ dtd(S).

sup
x∈∆(S)

R(t)(x) ≤
M2

2

t∑
τ=1

ητ+1 +
1

ηt+1

ln
1

vdn
t

+ Ltdtd(S)
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Additional slides: Hedge Vs. learning on a cover

• Given a horizon T and a cover AT with d(A) ≤ dTd(S) for all A ∈ AT .

• Run discrete Hedge on elements of the cover.

• Then

R(T )(x) ≤ M2Tη

8
+

ln |AT |
η︸ ︷︷ ︸

Discrete Hedge

+ Ld(S)dT︸ ︷︷ ︸
Additional regret

• With |AT | ≈ 1
dn
T
,

R(T )(x) ≤ M2Tη

8
+

ln 1
dn
T

η
+ LD(S)dT

• Have to explicitly compute a (hierarchical) cover.
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