The Hedge Algorithm on a Continuum
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Generalizing to dual averaging

Online learning on a continuum Basic Regret Bound
Online decision problem on S. Basic regret bound Dual averaging with learning rates (1);), strongly convex regularizer 1)
1. for t € N do 1. for t € N do

». Decision maker chooses distribution x{*) over S. For all x € A(S), 2. Play x(

3. A loss function /\Y) : S — [0, M] is revealed. Assumed L-Lipschitz. 7 Y (%) 3. Discover /t) € H*

4:  The decision maker incurs expected loss R (x) < D3 Zmﬂ { Me+1 4. Update x'"1) = arg Minyea(s) <L(t)7x> nt1+1'

=1
(t) p(t)\ — (t)( ) p(t)
<X £ > B /SX (5)(" (s)A(ds) = By [(s)] In the finite case, ¥)(x) < In N on AN, »H is infinite dimensional. Can we solve min, ca(s) (L), x) - mlﬂw(x)?

But 1) is unbounded on A(S). » Can we obtain a sublinear regret bound?
Take x = ﬁl/\ for some A C S. Then (x) = fs x(s)Inx(s)A(ds) = In ﬁ' Yes, for a family of strongly convex f-divergences.

Numerical experiments

Working around unbounded regularizers

T

i
RO =Y <X<t>7 g(t)> _ <X7 3 g(t)> For any density y

t=1

Hedge algorithm

RO(x) < RO(y) + (L), y — 55 )

Objective: design algorithm with N = on set S
(T)() _ In particular, if y is uniform on A; which contains s} = L
(Sgl(th)) XseuApN R (X) O(T) arg min._ . L(t)(s), » with Llpschltz Iosses

» with n; = ©

sup RUY(x) < RUY(y) + <L(t),y - 5s;>

Regret rates x€A(S) Figure: Per-round regret

Variant of this problem: Online optimization on convex sets.

Assumptions on /%) convex Qi-eXp-concave uniformly L-Lipschitz .
Uniformly fat sets =z

Assumptions on S convex convex v-uniformly fat =
Uniformly fat sets

Method Gradient (Zinkevich) Hedge (Hazan et al.)| Hedge (this work)

. S is v-uniformly fat (w.r.t. the measure \) if Vs € S, 4 convex K; C S, with
Learning rates 1//t Qo 1/4/t s € K, and A(K.) > v | | |
(1 O(\/E) O(Iog t) O(\/t op t) Figure: Effect of the learning rate n, = 04/%*

Table: Regret upper bounds for different classes of losses.
Learning on a cover
Hedge on a continuum
. — » Given a horizon T and a cover A1 with d(A) < drd(S) for all A€ Ar.

Online decision problem over a compact set S.

. for t € N do Figure: Examples of uniformly fat sets (left) and a not uniformly fat set (right) » Run discrete Hedge on elements of the cover.
2. Play ~ x{) - her M?Tn In|At
3. Reveal /(1) : S — [0, M]. Call L) =S8 () Regret bound on uniformly fat sets R (x) < . T IATT Ld(S)d7
4: Update | N A Amet
X(t+1)(5) X X(O)(S)e_mHL(t)(s) Take A; = S?—|— dt(KS; — S;) Then D;:czte Hedge
»With [A7| ~ 45, RT(x) < M0 4 =% 4 [D(S)dr.

Interpretation: instance of the dual averaging method > A(Ar) > di'v
»d(A;) < d:d(S).

X649 € argamin (19, x) + () Final bound

» Have to epr|C|t|y compute a (hierarchical) cover.

xCAG) Summary
with M2 Int  plnt » Can learn on a continuum, when losses are Lipschitz and S has reasonable geometry.
2(S sup RW(x) < _2777-_|_1 pe— - Ld(S) - . .
» Hilbert space H = L*( fs A(ds) e A(S) 9 i1 D » Similar guarantee to learning on a cover, but do not need to maintain a cover.
»A( ) {x € LQ(S) X > O Hle — 1} T » Can generalize to the dual averaging method.
= [sx(s) Inx(s)A(ds) Can optimize over 7, to get Extensions and open questions
nint 4 In% » Bandit formulation.
SUI(DS) R(t)(x) < Ld(S) + M\/ 5 V't » Regret lower bound.
xeA

» When is it easy to sample from the Hedge distribution?
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