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Bregman Projections onto the simplex

Bregman projections are the building block of mirror descent (Nemirovski and Yudin)
and dual averaging (Nesterov).

o Convex optimization: minyex f(x)

@ Online learning (regret minimization).
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Bregman Projections onto the simplex

Bregman projections are the building block of mirror descent (Nemirovski and Yudin)
and dual averaging (Nesterov).

o Convex optimization: minyex f(x)

@ Online learning (regret minimization).

Algorithm 2 Mirror descent method
1: for 7 € N do
2. Query a sub-gradient vector g(™) € 8f(x(7)) (or loss vector)
3:  Update

X7 = arg min Dy (x,(V) (VY (7)) — n,g()) (1)
xeX

@ 1) strongly convex distance generating function.

e D,: Bregman divergence.
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[llustration of Bregman projections

E E*

Figure: Illustration of a mirror descent iteration.

X7 = arg min Dy (V) (Ve (x()) — 1, g(7))
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More precisely

o Feasible set is the simplex (or cartesian product of simplexes)
A={xeR]:> x=1
i

Motivation: online learning, optimization with probability distributions.
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More precisely

o Feasible set is the simplex (or cartesian product of simplexes)

A:{xeRi:Zx,-:1}
i

Motivation: online learning, optimization with probability distributions.

@ DGF is induced by a potential.
P(x) =D fx)

= "¢~ (u)du, ¢ increasing, called the potential.
Consequence. known expression of V1 and (V)1
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Projection algorithms

General strategy:

Derive optimality conditions

Design algorithm to satisfy conditions.
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Optimality conditions

x* = arg min Dy (x,(VY) "H(Vi() — 8)
xeX

Optimality conditions

*

x* is optimal if and only if Iv* € R:

{Vi xt = (o671 (%) — & + 7)),
Lix =1

Proof: write KKT conditions, eliminate complementary slackness.
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Optimality conditions

x* = arg min Dy, (x,(VY) " H(Vh(%) — &)
xeXxX

Optimality conditions

X*

is optimal if and only if Jv* € R:
{v,- X = (¢l (=) — &+ ),

d *
i=1% =1

Proof: write KKT conditions, eliminate complementary slackness.
Comments:

@ Reduced a problem in dimension d to a problem in dimension 1.
e The function c: v — 3, (¢(¢~1(%) — & + 1/))+ is increasing.

o Can solve for v* using bisection.
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Bisection algorithm for general divergences

Numerical experiments
0000

Algorithm 3 Bisection method to compute the projection x* with precision e.

1: Input: X, g, €.
2: Initialize

3: while ¢(7) — c(v) > € do

4 Let vt X

5:  if c(v') > 1 then

6: vt

7. else

8: v vt

9: Return X(7) = (o(o™ (X)) — & + 7)),

The algorithm terminates after O(In %) iterations, and outputs X such that

1%(7) — x*|| <
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Exact projections for exponential divergences

Special case 1:
(x) = ||x||?: can compute the solution exactly [1].

[1] J. Duchi, S. Shalev-Schwartz, Y. Singer, T. Chandra, Efficient Projections onto the ¢; Ball for
Learning in High Dimensions, ICML 2008.
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Exact projections for exponential divergences

Special case 1:

(x) = ||x||?: can compute the solution exactly [1].
Special case 2:

Exponential divergence:

e (—00, +00) = (—¢,+00)

ur et — ¢

[1] J. Duchi, S. Shalev-Schwartz, Y. Singer, T. Chandra, Efficient Projections onto the ¢; Ball for
Learning in High Dimensions, ICML 2008.
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Exact projections for exponential divergences

Special case 1:

(x) = ||x||?: can compute the solution exactly [1].
Special case 2:

Exponential divergence:

e (—00, +00) = (—¢,+00)

ur et — ¢

@ Fore=0:
P(x) = H(x) = >; xi Inx; (negative entropy).
Dy(x,y) = Drr(x,y).

[1] J. Duchi, S. Shalev-Schwartz, Y. Singer, T. Chandra, Efficient Projections onto the ¢; Ball for
Learning in High Dimensions, ICML 2008.
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Exact projections for exponential divergences

Special case 1:

(x) = ||x||?: can compute the solution exactly [1].
Special case 2:

Exponential divergence:

e (—00, +00) = (—¢,+00)

ur et — ¢

@ Fore=0:
P(x) = H(x) = >; xi Inx; (negative entropy).
Dy (x,y) = Dri(x,y).
@ For e > 0:
P(x) = H(x +¢)
Dy(x,y) = Drr(x + ¢,y +¢).

[1] J. Duchi, S. Shalev-Schwartz, Y. Singer, T. Chandra, Efficient Projections onto the ¢; Ball for
Learning in High Dimensions, ICML 2008.



Motivation

Bregman projection with KL divergence.
o Hedge algorithm in online learning.
o Multiplicative weights algorithm.

o Exponentiated gradient descent.

°

Has closed-form solution in O(d)
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Motivation

Bregman projection with KL divergence.
o Hedge algorithm in online learning.
o Multiplicative weights algorithm.
o Exponentiated gradient descent.
@ Has closed-form solution in O(d)

=== Dir(x,y0)
— Dire(w,0)
e = oll?

However:
@ Dk (x,y) unbounded on the simplex
(problematic for stochastic mirror descent).

e H(x) is not a smooth function
(problematic for accelerated mirror descent).

Taking € > 0 solves these issues.
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Optimality conditions

Recall general optimality condition: x* = (qb(qb*l()'(,‘) - g + V*))+.

Optimality conditions with exponential divergence

Let x* be the solution and Z = {i : x* > 0} its support. Then

VieT, xt=—et EFdeH
i C (2)

U -
7 — Ticz(Fite)e &
- 1+|Z]e

Furthermore, if y; = (X; + ¢)e &, then

(feZTandy>y)=j€l
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A sorting-based algorithm

Algorithm 4 Sorting method to compute the Bregman projection with Dy,

1: Input: X, g
2: Output: x* )
3: Form the vector y; = (X; + ¢)e™ &
4: Sort y, let y,(;) be the i-th smallest element of y.
5. Let j* be the smallest index for which
(L+e(d—J+1)70gy — €D Vo) >0
i>j
_ iz Ye()
6: Set Z = Tre(d— 1)
7: Set

Complexity: O(dInd)
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A randomized-pivot algorithm

Adapted from the QuickSelect algorithm: Select it" element of a vector y.
o Can sort then return it" element: O(d Ind).
o QuickSelect: expected O(d), worst-case O(d?).
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A randomized-pivot algorithm
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A randomized-pivot algorithm
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A randomized-pivot algorithm
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A randomized-pivot algorithm
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A randomized-pivot algorithm
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A randomized-pivot algorithm
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A randomized-pivot algorithm
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Scaling of the SortProject and QuickProject

Numerical experiments
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Figure: Execution time of the SortProject and QuickProject algorithms, as a function of

problem dimension d



Accelerated entropic descent with and without smoothing

*

Figure: Entropic descent, with and without smoothing [2].

[2] W. Krichene, A. Bayen, P. Bartlett, Accelerated Mirror Descent in Continuous and Discrete
Time, NIPS 2015. 14/15
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Summary
Bregman projection Method Complexity
General divergence Bisection O(In %)
Exponential divergence SortProjection O(dInd)
Exponential divergence | QuickProjection | O(d) in expection

Used for
o Convex optimization on the simplex.
@ Online learning.
@ Accelerated entropic descent.

o Code implementation: github.com/walidk


github.com/walidk
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Bregman projection Method Complexity

General divergence Bisection O(In %)
Exponential divergence SortProjection O(dInd)
Exponential divergence | QuickProjection | O(d) in expection

Used for

o Convex optimization on the simplex.

@ Online learning.

@ Accelerated entropic descent.

o Code implementation: github.com/walidk

Thank you!

eecs.berkeley.edu/~walid/


github.com/walidk

Figure: Entropic descent, with and without smoothing
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