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Bregman Projections onto the simplex

Bregman projections are the building block of mirror descent (Nemirovski and Yudin)
and dual averaging (Nesterov).

Convex optimization: minx2X f (x)

Online learning (regret minimization).

Algorithm 1 Mirror descent method
1: for ⌧ 2 N do

2: Query a sub-gradient vector g (⌧) 2 @f (x(⌧)) (or loss vector)
3: Update

x(⌧+1) = arg min
x2X

D (x ,(r )�1(r (x(⌧))� ⌘⌧g (⌧))) (1)

 : strongly convex distance generating function.
D : Bregman divergence.
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Illustration of Bregman projections
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Figure: Illustration of a mirror descent iteration.

x(⌧+1) = arg min
x2X

D (x ,(r )�1(r (x(⌧))� ⌘⌧g (⌧)))
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More precisely

Feasible set is the simplex (or cartesian product of simplexes)

� =

(
x 2 Rd

+ :
X

i

xi = 1

)

Motivation: online learning, optimization with probability distributions.

DGF is induced by a potential.

 (x) =
X

i

f (xi )

f (x) =
R x
1 �

�1(u)du, � increasing, called the potential.
Consequence: known expression of r and (r )�1.
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Projection algorithms

General strategy:

Derive optimality conditions

Design algorithm to satisfy conditions.
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Optimality conditions

x? = arg min
x2X

D (x ,(r )�1(r (x̄)� ḡ)

Optimality conditions

x? is optimal if and only if 9⌫? 2 R:
(
8i , x?i =

�
�(��1(x̄i )� ḡi + ⌫?)

�
+
,

Pd
i=1 x

?
i = 1,

Proof: write KKT conditions, eliminate complementary slackness.

Comments:
Reduced a problem in dimension d to a problem in dimension 1.
The function c : ⌫ 7!P

i

�
�(��1(x̄i )� ḡi + ⌫)

�
+

is increasing.

Can solve for ⌫? using bisection.
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Bisection algorithm for general divergences

Algorithm 3 Bisection method to compute the projection x? with precision ✏.
1: Input: x̄ , ḡ , ✏.
2: Initialize

⌫̄ = ��1(1)�max
i
��1(x̄i )� ḡi

⌫ = ��1 (1/d)�max
i
��1(x̄i )� ḡi

3: while c(⌫)� c(⌫) > ✏ do

4: Let ⌫+  ⌫̄+⌫
2

5: if c(⌫+) > 1 then

6: ⌫̄  ⌫+

7: else

8: ⌫  ⌫+

9: Return x̃(⌫̄) =
�
�(��1(x̄i )� ḡi + ⌫̄)

�
+

Theorem

The algorithm terminates after O(ln 1
✏ ) iterations, and outputs x̃ such that

kx̃(⌫̄)� x?k  ✏
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Exact projections for exponential divergences

Special case 1:
 (x) = kxk2: can compute the solution exactly [1].

Special case 2:
Exponential divergence:

�✏ : (�1,+1)! (�✏,+1)

u 7! eu�1 � ✏,

For ✏ = 0:
 (x) = H(x) =

P
i xi ln xi (negative entropy).

D (x , y) = DKL(x , y).
For ✏ > 0:
 (x) = H(x + ✏)
D (x , y) = DKL(x + ✏, y + ✏).

[1] J. Duchi, S. Shalev-Schwartz, Y. Singer, T. Chandra, Efficient Projections onto the `1 Ball for
Learning in High Dimensions, ICML 2008.
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Motivation

Bregman projection with KL divergence.
Hedge algorithm in online learning.
Multiplicative weights algorithm.
Exponentiated gradient descent.
Has closed-form solution in O(d)

However:
DKL(x , y) unbounded on the simplex
(problematic for stochastic mirror descent).
H(x) is not a smooth function
(problematic for accelerated mirror descent).

Taking ✏ > 0 solves these issues.
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p

DKL(x, y0)

DKL,✏(x, y0)

`✏
2 kx� y0k21
L✏
2 kx� y0k21
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Optimality conditions

Recall general optimality condition: x?i =
�
�(��1(x̄i )� ḡi + ⌫?)

�
+
.

Optimality conditions with exponential divergence

Let x? be the solution and I = {i : x?i > 0} its support. Then
8
<

:
8i 2 I, x?i = �✏+ (x̄i+✏)e

�ḡi

Z? ,

Z? =
P

i2I (x̄i+✏)e
�ḡi

1+|I|✏ .
(2)

Furthermore, if ȳi = (x̄i + ✏)e�ḡi , then

(i 2 I and ȳj > ȳi )) j 2 I
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A sorting-based algorithm

Algorithm 4 Sorting method to compute the Bregman projection with D ✏

1: Input: x̄ , ḡ
2: Output: x?

3: Form the vector ȳi = (x̄i + ✏)e�ḡi

4: Sort ȳ , let ȳ�(i) be the i-th smallest element of y .
5: Let j? be the smallest index for which

(1 + ✏(d � j + 1))ȳ�(j) � ✏
X

i�j

ȳ�(i) > 0

6: Set Z =
P

i�j? ȳ�(i)

1+✏(d�j?+1)
7: Set

x?i =

✓
�✏+ ȳi

Z

◆

+

Complexity: O(d ln d)
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A randomized-pivot algorithm

Adapted from the QuickSelect algorithm: Select i th element of a vector ȳ .
Can sort then return i th element: O(d ln d).
QuickSelect: expected O(d), worst-case O(d2).
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A randomized-pivot algorithm

9 1 4 8 7 2 3 5 6

k = 5
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Scaling of the SortProject and QuickProject
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Figure: Execution time of the SortProject and QuickProject algorithms, as a function of

problem dimension d
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Accelerated entropic descent with and without smoothing

Figure: Entropic descent, with and without smoothing [2].

Offline video

[2] W. Krichene, A. Bayen, P. Bartlett, Accelerated Mirror Descent in Continuous and Discrete
Time, NIPS 2015.
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Summary

Bregman projection Method Complexity
General divergence Bisection O(ln 1

✏ )
Exponential divergence SortProjection O(d ln d)
Exponential divergence QuickProjection O(d) in expection

Used for
Convex optimization on the simplex.
Online learning.
Accelerated entropic descent.
Code implementation: github.com/walidk

Thank you!

eecs.berkeley.edu/⇠walid/

github.com/walidk
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Accelerated entropic descent with and without smoothing

Back

Figure: Entropic descent, with and without smoothing
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