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Abstract

A Lyapunov Approach to Accelerated First-Order Optimization In Continuous and
Discrete Time

by

Walid Krichene

Master of Arts in Mathematics

University of California, Berkeley

Professor Nikhil Srivastava, Chair

We study accelerated first-order dynamics for optimization, in continuous and discrete
time. Combining the original continuous-time motivation of Nemirovski’s mirror descent
with a recent ODE interpretation of Nesterov’s accelerated method, we propose a family of
continuous-time dynamics for constrained minimization of convex functions with Lipschitz
gradients, such that the solution trajectories are guaranteed to converge to the optimum at
a O(1/t2) rate. This family of continuous-time dynamics is naturally described as coupled
dynamics of an unconstrained dual variable which accumulates gradient information, and a
constrained primal variable which can be interpreted as an averaging of the mirrored dual
trajectory. We then show that a large family of first-order accelerated methods can be ob-
tained as a discretization of the ODE, and these methods converge at a O(1/k2) rate. This
connection between accelerated mirror descent and the ODE provides an intuitive approach
to the design and analysis of accelerated first-order algorithms.
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Chapter 1

Introduction

We consider a constrained convex optimization problem,

minimize f(x)

subject to x ∈ X ,
where X ⊆ Rn is convex and closed, f is a C1 convex function, and its gradient, ∇f is
assumed to be Lf -Lipschitz with respect to a pair of dual norms (‖ · ‖, ‖ · ‖∗), i.e. ‖∇f(x)−
∇f(y)‖∗ ≤ Lf‖x − y‖ for all x, y ∈ X . Let S ⊂ X be the set of minimizers of f on X ,
and f ? the value of f on S. Many convex optimization methods can be interpreted as the
discretization of an ordinary differential equation, the solutions of which are guaranteed to
converge to S. Perhaps the simplest such method is gradient descent for the unconstrained
problem, given by the iteration x(k+1) = x(k) − s∇f(x(k)) for some step size s > 0, which
can be interpreted as the discretization of the ODE Ẋ(t) = −∇f(X(t)), with discretization
step s. The well-established theory of ordinary differential equations can provide guidance
in the design and analysis of optimization algorithms, and has been used for unconstrained
optimization [10, 9, 17], constrained optimization [31] and stochastic optimization [29]. It
has also been applied to second-order methods for optimization, for example the Hessian-
driven damping method in [4], and to more general problems, such as finding a zero of a
monotone operator [2]. In particular, proving convergence of the solution trajectories of an
ODE can often be achieved using simple and elegant Lyapunov arguments. The ODE can
then be carefully discretized to obtain an optimization algorithm for which the convergence
rate can be analyzed by using an analogous Lyapunov argument in discrete time.

In this thesis, we focus on two families of first-order methods: Nesterov’s accelerated
method [26], and Nemirovski’s mirror descent method [23]. First-order methods have become
increasingly important for large-scale optimization problems that arise in machine learning
applications. Nesterov’s accelerated method [26] has been applied to many problems and
extended in a number of ways, see for example [27, 25, 24, 5]. The mirror descent method
also provides an important generalization of the gradient descent method to constrained,
non-Euclidean geometries, as discussed in [23, 6], and has many applications in convex op-
timization [8, 7, 14, 19], as well as online learning [11, 13]. An intuitive understanding of
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these methods is of particular importance for the design and analysis of optimization algo-
rithms. Although Nesterov’s method has been notoriously hard to explain intuitively [18],
progress has been made recently: in [32], Su et al. give an ODE interpretation of Nesterov’s
method. However, this interpretation is restricted to the original method [26], and does not
apply to constrained, non-Euclidean geometries. In [1], Allen-Zhu and Orecchia give another
interpretation of Nesterov’s method, as performing, at each iteration, a convex combination
of a mirror step and a gradient step. Although it covers a broader family of algorithms
(including non-Euclidean geometries), this interpretation still requires an involved analysis,
and lacks the simplicity and elegance of ODEs. We provide a new interpretation which
has the benefits of both approaches: we show that a broad family of accelerated methods
(which includes those studied in [32] and [1]) can be obtained as a discretization of a simple
ODE, which is guaranteed to converges in O(1/t2). This provides a unified interpretation,
which could potentially simplify the design and analysis of first-order accelerated methods
for constrained convex optimization.

The continuous-time interpretation [32] of Nesterov’s method and the continuous-time
motivation of mirror descent [23] both rely on a Lyapunov argument. They are reviewed
in Chapter 2. By combining these ideas, we propose, in Chapter 3, a candidate Lyapunov
function V (X(t), Z(t), t) that depends on two state variables: X(t), which evolves in the
primal space E = Rn (more precisely, X(t) evolves in the feasible set X ⊂ E), and Z(t),
which evolves in the dual space E∗, and we design coupled dynamics of (X,Z) to guarantee
that d

dt
V (X(t), Z(t), t) ≤ 0. Such a function is said to be a Lyapunov function in reference

to [22]; see also [20]. This derivation leads to a new family of ODE systems, given by
Ż = − t

r
∇f(X)

Ẋ = r
t
(∇ψ∗(Z)−X)

X(0) = x0, Z(0) = z0 with ∇ψ∗(z0) = x0

(1.1)

where r is a positive parameter, and ψ∗ is a distance generating function on E∗ with Lipschitz
gradient. We prove the existence and uniqueness of the solution to (1.1) in Theorem 1. Then
we prove in Thereom 2, using the Lyapunov function V , that the solution trajectories are
such that f(X(t))− f ? = O(1/t2).

In Chapter 4, we derive equivalent formulations of the ODE. In particular, we show that
the second equation is equivalent, in integral form, toX(t) =

∫ t
0
w(τ)∇ψ∗(Z(τ))dτ/

∫ t
0
w(τ)dτ ,

where w(τ) = τ r−1, so that the primal variable X can be interpreted as a weighted average
of the mirrored dual trajectory ∇ψ∗(Z(τ)), τ ∈ [0, t]. Here, the function ∇ψ∗ is a mapping
from the dual space E∗ to the feasible set X , which guarantees that the primal variable
remains in the feasible set, by convexity. Motivated by this averaging interpretation, we
generalize the ODE to allow other weight functions w(τ), and derive sufficient conditions
on w(τ) for t 7→ V (X(t), Z(t), t) to be a Lyapunov function. We also give a formulation in
terms of a second-order ODE only involving the primal variable X, which can be interpreted
as describing the dynamics of a damped particle in a conservative potential field.
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In Chapter 5, we give a discretization of these continuous-time dynamics, and obtain a
family of accelerated mirror descent methods, for which we prove the same O(1/k2) conver-
gence rate (Theorem 5) using a Lyapunov argument analogous to the continuous-time case.
We give, as an example, a new accelerated method on the simplex, which can be viewed as
performing, at each step, a convex combination of two entropic projections with different
step sizes. This ODE interpretation of accelerated mirror descent gives new insights and
allows us to extend recent results, such as the adaptive restarting heuristics proposed by
O’Donoghue and Candès in [28], which are known to empirically improve the convergence
rate. We also propose a new restarting scheme for which the restarting condition is defined
on the dual space. We test these methods on numerical examples in Chapter 6 and give
comments on their theoretical and empirical performance.
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Chapter 2

Nemirovski’s mirror descent and
Nesterov’s accelerated method in
continuous time

Proving convergence of the solution trajectories of an ODE often involves a Lyapunov ar-
gument. For example, to prove convergence of the solutions of the unconstrained gra-
dient descent ODE, Ẋ(t) = −∇f(X(t)), consider the Lyapunov function D(x?, X(t)) =
1
2
‖X(t)− x?‖2

2 for some minimizer x? ∈ S. Then the time derivative of D(x?, X(t)) is given
by

d

dt
D(x?, X(t))(t) =

〈
Ẋ(t), X(t)− x?

〉
= 〈−∇f(X(t)), X(t)− x?〉
≤ −(f(X(t))− f ?),

where the last inequality is by convexity of f . Integrating the inequality, we haveD(x?, X(t))−
D(x?, X(0)) ≤ tf ? −

∫ t
0
f(X(τ))dτ , thus by Jensen’s inequality, f

(
1
t

∫ t
0
X(τ)dτ

)
− f ? ≤

1
t

∫ t
0
f(X(τ))dτ − f ? ≤ D(x?,X(0))

t
, which proves that f

(
1
t

∫ t
0
X(τ)dτ

)
converges to the op-

timum at a O(1/t) rate. In fact one can also show the convergence of X(t) to the set of
minimizers S. Define the distance to the set of minimizers, D(S, x) = infx?∈S D(x?, x) (this
is a continuous function of x whenever S is compact). We have shown that D(x?, X(t)) is
a decreasing function of t for all x? ∈ S. Since t 7→ D(S,X(t)) is the pointwise infimum of
non-negative, decreasing functions, it is also decreasing and non-negative, therefore it has
a limit as t → ∞, and its limit is necessarily 0: By contradiction, suppose that its limit is
strictly positive. Then there exists d > 0 and T ≥ 0 such that for all t ≥ T , D(S,X(t)) > d,

and by continuity of f and D(S, ·), δ ∆
= inf{x:D(S,x)>d} f(x)− f ∗ > 0. Thus for all t ≥ T , and
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for all x? ∈ S,

d

dt
D(x?, X(t)) ≤ f ? − f(X) ≤ −δ

Integrating, we would have D(x?, X(t)) ≤ D(x?, X(T )) − (t − T )δ for all t ≥ T , which
contradicts the fact that D is non-negative. This proves that D(S,X(t)) converges to 0.

2.1 Mirror descent ODE

The previous argument was extended by Nemirovski and Yudin in [23] to a family of methods
called mirror descent. The idea is to start from a non-negative function, then to design
dynamics for which that function is a Lyapunov function. Nemirovski and Yudin argue
that one can replace the Lyapunov function D(x?, X(t)) = 1

2
‖X(t)− x?‖2

2 (used in gradient
descent) by a function defined on the dual space, Dψ∗(Z(t), z?), where Z(t) ∈ E∗ is a dual
variable for which we will design the dynamics, and the corresponding trajectory in the
primal space is X(t) = ∇ψ∗(Z(t)) and x? = ∇ψ∗(z?). Here, E∗ is the dual space, i.e. the
space of linear functionals on E (in our case, since E = Rn, E∗ can also be identified with
Rn, but we make this distinction since, conceptually, the spaces E and E∗ are different),
and ψ∗ is a convex function assumed to be finite and differentiable on all of E∗, and such
that ∇ψ∗ maps from E∗ to X . Such a function ψ∗ can be obtained by taking the Fenchel
conjugate of a strongly convex function ψ with effective domain X ; See Appendix A for a
more detailed discussion of duality properties of ψ and ψ∗, and the operator ∇ψ∗, which we
refer to as the mirror operator.

The function Dψ∗(·, ·) is the Bregman divergence associated with ψ∗, given as follows:
for all z, y ∈ E∗,

Dψ∗(z, y) = ψ∗(z)− ψ∗(y)− 〈∇ψ∗(y), z − y〉 .
The function ψ∗ is said to be `-strongly convex w.r.t. ‖ · ‖∗ if Dψ∗(z, y) ≥ `

2
‖z − y‖2

∗ for all
y, z, and it is said to be L-smooth (w.r.t. the norm ‖ ·‖∗) if ∇ψ∗ is L-Lipschitz (equivalently,
Dψ∗ is L-smooth if Dψ∗(z, y) ≤ L

2
‖z − y‖2

∗, as shown in the appendix).
By definition of the Bregman divergence, we have

d

dt
Dψ∗(Z(t), z?) =

d

dt
(ψ∗(Z(t))− ψ∗(z?)− 〈∇ψ∗(z?), Z(t)− z?〉)

=
〈
∇ψ∗(Z(t))−∇ψ∗(z?), Ż(t)

〉
=
〈
X(t)− x?, Ż(t)

〉
.

Therefore, if the dual variable Z obeys the dynamics Ż = −∇f(X), then

d

dt
Dψ∗(Z(t), z?) = −〈∇f(X(t)), X(t)− x?〉 ≤ −(f(X(t))− f ?)
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and by the same argument as in the gradient descent ODE, Dψ∗(Z(t), z?) is a Lyapunov

function and f
(

1
t

∫ t
0
X(τ)dτ

)
− f ? converges to 0 at a O(1/t) rate. The mirror descent

ODE system can be summarized by
X = ∇ψ∗(Z)

Ż = −∇f(X)

X(0) = x0, Z(0) = z0 with ∇ψ∗(z0) = x0

(2.1)

This is illustrated in Figure 2.1.

E E∗

X

∇ψ∗

∂ψ

Z(t)

−∇f(X(t))X(t)

Figure 2.1: Illustration of the mirror descent ODE. The dual variable Z evolves in the
(unconstrained) dual space E∗, and follows the flow of −∇f(X(t)). The primal trajectory
X(t) is obtained by applying the mirror operator ∇ψ∗ to the dual trajectory Z(t).

Note that since X = ∇ψ∗(Z), and the mirror operator ∇ψ∗ maps into X by assumption,
the solution trajectory X(t) remains in X . Therefore, the mirror descent ODE is a natural
generalization of gradient descent to constrained optimization problems: if one can construct
a mirror operator ∇ψ∗ which maps into X , the solution is guaranteed to remain in X . We
also observe that the unconstrained gradient descent ODE can be obtained as a special case
of the mirror descent ODE (2.1) by taking ψ∗(z) = 1

2
‖z‖2

2, for which ∇ψ∗ is the identity, in
which case X and Z coincide.

The family of mirror descent methods can then be obtained by discretizing the ODE (2.1),
and can be analyzed by using an analogous Lyapunov function in discrete time [23]. The mir-
ror descent method is of particular importance in convex optimization, since the appropriate
choice of Bregman divergence Dψ∗ can lead to improving the dependence of the convergence
rate on the dimension of the space, see for example [23] and [8].
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2.2 ODE interpretation of Nesterov’s accelerated

method

In [32], Su et al. show that Nesterov’s accelerated method [26] can be interpreted as a
discretization of a second-order differential equation, given by{

Ẍ + r+1
t
Ẋ +∇f(X) = 0,

X(0) = x0, Ẋ(0) = 0.
(2.2)

The argument uses the following function (up to reparameterization), E(t) = t2

r2
(f(X)−f ?)+

1
2
‖X + t

r
Ẋ − x?‖2, which is proved to be a Lyapunov function for the ODE (2.2) whenever

r ≥ 2. Since E is decreasing along trajectories of the system, it follows that for all t > 0,

E(t) ≤ E(0) = 1
2
‖x0 − x?‖2, therefore f(X(t)) − f ? ≤ r2

t2
E(t) ≤ r2

t2
E(0) ≤ r2

t2
‖x0−x?‖2

2
, which

proves that f(X(t)) converges to f ? at a O(1/t2) rate.
One should note in particular that the squared Euclidean norm is used in the definition

of E and, as a consequence, discretizing the ODE (2.2) leads to a family of unconstrained,
Euclidean accelerated methods. In the next chapter, we show that by combining this argu-
ment with Nemirovski’s idea of using a general Bregman divergence as a Lyapunov function,
we can construct a much more general family of ODE systems which have the same O(1/t2)
convergence guarantee. And by discretizing the resulting dynamics, we obtain a general
family of accelerated methods that are not restricted to the Euclidean geometry.
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Chapter 3

Accelerated Mirror Descent in
Continuous-time

3.1 Lyapunov design of the dynamics

Let ‖ · ‖∗ be a reference norm on the dual space E∗, and let ψ∗ be a distance generating
function on E∗, assumed to be Lψ∗-smooth with respect to ‖ · ‖∗. Consider the function

V (X,Z, t) =
t2

r2
(f(X)− f ?) +Dψ∗(Z, z

?) (3.1)

where Z is a dual variable for which we will design the dynamics, and z? is its value at
equilibrium. Taking the time-derivative of V (X(t), Z(t), t), we have

d

dt
V (X(t), Z(t), t) =

2t

r2
(f(X)− f ?) +

t2

r2

〈
∇f(X), Ẋ

〉
+
〈
Ż,∇ψ∗(Z)−∇ψ∗(z?)

〉
Assume that Ż = − t

r
∇f(X). Then, the time-derivative becomes

d

dt
V (X(t), Z(t), t) =

2t

r2
(f(X)− f ?)− t

r

〈
∇f(X),− t

r
Ẋ +∇ψ∗(Z)−∇ψ∗(z?)

〉
.

Therefore, if X satisfies X + t
r
Ẋ = ∇ψ∗(Z), and ∇ψ∗(z?) = x?, then,

d

dt
V (X(t), Z(t), t) =

2t

r2
(f(X)− f ?)− t

r
〈∇f(X), X − x?〉

≤ 2t

r2
(f(X)− f ?)− t

r
(f(X)− f ?)

≤ −tr − 2

r2
(f(X)− f ?) (3.2)
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and it follows that V is a Lyapunov function whenever r ≥ 2. The proposed ODE system is
then given by 

Ẋ = r
t
(∇ψ∗(Z)−X),

Ż = − t
r
∇f(X),

X(0) = x0, Z(0) = z0, with ∇ψ∗(z0) = x0.

In the Euclidean case, taking ψ∗(z) = 1
2
‖z‖2

2, we have ∇ψ∗(z) = z, thus Z = X+ t
r
Ẋ, and

the ODE system is equivalent to d
dt

(
X + t

r
Ẋ
)

= − t
r
∇f(X), i.e. t

r
Ẍ+ r+1

r
Ẋ+ t

r
∇f(X) = 0,

which is equivalent to the ODE (2.2) studied in [32], which we recover as a special case.
It is also important to observe that since ∇ψ∗ maps into X , then any primal solution

X(t) is viable (i.e. remains in the feasible set X ). Intuitively, since Ẋ = r
t
(∇ψ∗(Z) − X),

then Ẋ(t) always points inside the feasible set X . In particular, whenever X(t) is on the
boundary of E, Ẋ(t) towards the interior of X , thus guaranteeing that X remains in X .
This argument is made more precise in the proof of Theorem 1.

3.2 Existence, uniqueness and viability of the solution

First, we prove existence and uniqueness of a solution to the ODE system (4.3), defined for all
t > 0. By assumption, both ∇f and ∇ψ∗ are Lipschitz-continuous functions. Unfortunately,
due to the r

t
term in the expression of Ẋ, the function (X,Z, t) 7→ (Ẋ, Ż) is not Lipschitz

at t = 0. However, one can work around this by considering a sequence of approximating
ODEs, similarly to the argument used in [32].

Theorem 1. Suppose f is C1, and that ∇f is Lf -Lipschitz, and let x0 ∈ X . Then the
accelerated mirror descent ODE system (1.1) with initial condition (x0, z0) has a unique
solution (X,Z), in C1([0,∞),Rn). Furthermore, the primal solution X is viable, that is
X(t) ∈ X for all t ≥ 0.

We first show existence and uniqueness of a solution on any given interval [0, T ]. Let
δ > 0, and consider the smoothed ODE system

Ẋ = r
max(t,δ)

(∇ψ∗(Z)−X),

Ż = − t
r
∇f(X),

X(0) = x0, Z(0) = z0 with ∇ψ∗(z0) = x0.

(3.3)

Since the functions (X,Z) 7→ − t
r
∇f(X) and (X,Z) 7→ r

max(t,δ)
(∇ψ∗(Z) −X) are Lipschitz

for all t ∈ [0, T ], by the Cauchy-Lipschitz theorem (Theorem 2.5 in [33]), the system (3.3)
has a unique solution (Xδ, Zδ) in C1([0, T ]). In order to show the existence of a solution
to the original ODE, we use the following property of the solution to the smoothed ODE
(proved in the appendix).
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Lemma 1. Let t0 = 2√
LfLψ∗

. Then the family of solutions
(
(Xδ, Zδ)|[0,t0]

)
δ≤t0 is equi-

Lipschitz-continuous and uniformly bounded. More precisely,

‖Żδ(t)‖ ≤
3t

r
‖∇f(x0)‖,

‖Ẋδ(t)‖ ≤
(3 + r)Lψ∗t

2
‖∇f(x0)‖.

Proof of existence. Consider the family of solutions ((Xδi , Zδi), δi = t02−i)i∈N restricted to
[0, t0]. By Lemma 1, this family is equi-Lipschitz-continuous and uniformly bounded, thus by
the Arzelà-Ascoli theorem, there exists a subsequence ((Xδi , Zδi))i∈I that converges uniformly
on [0, t0]. Let (X̄, Z̄) be its limit. Then we prove that (X̄, Z̄) is a solution to the original
ODE (1.1) on [0, t0].

First, since for all i ∈ I, Xδi(0) = x0 and Zδi(0) = z0, it follows that

X̄(0) = lim
i→∞,i∈I

Xδi(0) = x0,

Z̄(0) = lim
i→∞,i∈I

Zδi(0) = z0,

thus (X̄, Z̄) satisfies the initial conditions. Next, let t1 ∈ (0, t0), and let (X̃, Z̃) be the solution
of the ODE (1.1) on t ≥ t1, with initial condition (X̄(t1), Z̄(t1)). Since (Xδi(t1), Zδi(t1))i∈I →
(X̄(t1), Z̄(t1)) as i→∞, then by continuity of the solution w.r.t. initial conditions, we have
that for some ε > 0, Xδi → X̃ uniformly on [t1, t1 + ε). But we also have Xδi → X̄
uniformly on [0, t0], therefore X̄ and X̃ coincide on [t1, t1 + ε), therefore X̄ satisfies the ODE
on [t1, t1 + ε). And since t1 is arbitrary in (0, t0), this concludes the proof of existence.

Proof of uniqueness. It suffices to prove uniqueness on an open neighborhood of 0, since
away from 0, uniqueness is guaranteed by the Cauchy-Lipschitz theorem.

Let (X,Z) and (X̄, Z̄) be two solutions of the ODE (1.1), and let ∆Z = Z − Z̄ and
∆X = X − X̄. Then ∆X ,∆Z are C1, and we have

∆̇Z = − t
r

(
∇f(X)−∇f(X̄)

)
∆̇X = r

t

(
∇ψ∗(Z)−∇ψ∗(Z̄)−∆X

)
∆Z(0) = ∆X(0) = 0

Let A(t) = sup[0,t]
‖∆̇Z(u)‖

u
, and B(t) = sup[0,t] ‖∆X‖. Note that B(t) is finite since ∆X is

continuous on [0, t]. The finiteness of A(t) will be established below. We have

‖∆̇Z(t)‖ =
t

r
‖∇f(X(t))−∇f(X̄(t))‖ ≤ Lf t

r
‖∆X(t)‖ ≤ Lf t

r
B(t).

Dividing by t and taking the supremum, we have

A(t) ≤ Lf
r
B(t). (3.4)
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Next, since tr∆̇X + rtr−1∆X = rtr−1
(
∇ψ∗(Z)−∇ψ∗(Z̄)

)
, we have

d

dt
(tr∆X) = rtr−1

(
∇ψ∗(Z)−∇ψ∗(Z̄)

)
.

Therefore, integrating and taking norms

tr‖∆X(t)‖ ≤
∫ t

0

rτ r−1‖∇ψ∗(Z(τ))−∇ψ∗(Z̄(τ))‖dτ

≤ rtr−1

∫ t

0

Lψ∗‖∆Z(τ)‖dτ

≤ Lψ∗rt
r−1A(t)

∫ t

0

τ 2

2
dτ

=
Lψ∗rt

r−1t3A(t)

6
,

where we used the fact that ‖∆Z(τ)‖ = ‖
∫ τ

0
∆̇Z(u)du‖ ≤

∫ τ
0
uA(t)du = A(t) τ

2

2
. Dividing by

tr and taking the supremum,

B(t) ≤ Lψ∗rt
2

6
A(t). (3.5)

Combining (3.4) and (3.5), we have A(t) ≤ LfLψ∗ t
2

6
A(t). It follows that A(t) = 0 for 0 ≤

t <
√

6
LfLψ∗

, which in turn implies that B(t) = 0 on the same interval. This concludes the

proof.

E

x0

X(t0)

X(t1)

∇ψ(Z(t2))

X(t2)

Figure 3.1: Illustration of the proof of viability.
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Proof of viability. We now prove that the primal solution X remains in X for all t. Intu-
itively, since Ẋ = r

t
(∇ψ∗(Z) − X), the derivative Ẋ will point towards X , keeping X(t)

inside the feasible set.
Suppose by contradiction that there exists t1 > 0 such that x1 = X(t1) /∈ X . Since X

is convex and compact, by the separation theorem, there exists a hyperplane that strictly
separates x1 and X . That is, there exists u, a ∈ Rn such that 〈u, x1 − a〉 > 0 and 〈u, x− a〉 <
0 for all x ∈ X . Now let d(x) = 〈u, x− a〉. Since the solution trajectory X(t) is C1,

t 7→ d(X(t)) is also C1, and ḋ(X(t)) =
〈
u, Ẋ(t)

〉
.

We have d(X(0)) < 0 (since x0 ∈ X ) and d(X(t1)) > 0, thus there exists t0 such
that d(X(t0)) = 0 and d(X(t)) > 0 for all t ∈ (t0, t1], that is, t0 is the last time X(t)
crosses the separating hyperplane (t0 is simply sup{t : d(X(t)) ≤ 0}). Then by definition,
d(X(t1))− d(X(t0)) > 0, but by Taylor’s theorem, there exists t2 ∈ [t0, t1] such that

d(X(t1))− d(X(t0)) = ḋ(X(t2)) =
〈
u, Ẋ(t2)

〉
=
r

t
〈u,∇ψ∗(Z(t2))−X(t2)〉

=
r

t
(d(∇ψ∗(Z(t2)))− d(X(t2))) < 0

since ∇ψ∗(Z(t2)) ∈ X . This is a contradiction, which concludes the proof.

3.3 Convergence rate

It is straightforward to establish the convergence rate of the function values.

Theorem 2. Suppose that ∇f and ∇ψ∗ are Lipschitz. Let (X(t), Z(t)) be the solution to
the accelerated mirror descent ODE (1.1) with r ≥ 2. Then for all t > 0,

f(X(t))− f ? ≤ r2Dψ∗(z0, z
?)

t2
(3.6)

Furthermore, if r > 2, then
∫∞

0
t(f(X(t))− f ?)dt is finite.

Proof. By construction of the ODE, we have V (X(t), Z(t), t) = t2

r2
(f(X(t))−f ?)+Dψ∗(Z(t), z?)

is a Lyapunov function. It follows that for all t > 0,

t2

r2
(f(X(t))− f ?) ≤ V (X(t), Z(t), t) ≤ V (x0, z0, 0) = Dψ∗(z0, z

?),

which proves the first inequality. Furthermore, we have that

d

dt
V (X(t), Z(t), t) ≤ −r − 2

r2
t(f(X(t))− f ?),
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thus, integrating from 0 to T and rearranging, we have∫ T

0

t(f(X(t))− f ?)dt ≤ r2

r − 2
V (x0, z0, 0) =

r2

r − 2
Dψ∗(z0, z

?),

which proves the second part of the claim.

Remark 1. The second part of the theorem indicates that the convergence rate is in fact better
than Ω(1/t2). Indeed, if f(X(t))−f ? ≥ c

t2
for some positive constant c, then

∫ T
1
t(f(X(t))−

f ?)dt ≥ c lnT , which would contradict the theorem. We also observe that, although it seems
from the bound (3.6) that smaller values of the parameter r are better, the upper bound
on the integral diverges as r approaches 2, which indicates that smaller values of r are not
necessarily better. In Section 4.3, we will give another interpretation of the parameter r as
a damping coefficient, and we will further discuss its effect on convergence.

3.4 Restarting the ODE in the strongly convex case

When the objective function is strongly convex with a known parameter, faster convergence
can be obtained by restarting the ODE at fixed intervals. That is, for some period T which
depends on the function parameters, if we call Tk = kT , we can define a trajectory (X,Z)
to be the union of the solutions, on each interval [Tk, Tk+1), of the ODE

Ż = − t−Tk
r
∇f(X)

Ẋ = r
t−Tk (∇ψ∗(Z)−X)

X(Tk) = xTk , Z(Tk) = zTk , where xTk = X(T−k ), and ∇ψ∗(zTk) = xTk .

(3.7)

That is, we solve a sequence of ODEs, one on each interval, and choose the initial conditions
at the start of each interval so that the primal trajectory is continuous. The dual variable Z
is reinitialized at Tk in order to satisfy ∇ψ∗(Z(Tk)) = X(T−k ). As we will see in Section 4.1,

the primal variable can be written as the weighted average X(t) =

∫ t
Tk
w(τ)∇ψ∗(Z(τ))dτ∫ t

Tk
w(τ)dτ

with

w(τ) = τ r−1. Thus, setting∇ψ∗(Z(Tk)) = X(T−k ) ensures continuity of the primal trajectory
(but the dual trajectory is in general, discontinuous at Tk). Also note that as a consequence
of restarting, Ẋ(Tk) = 0.

We now present a simple restarting strategy in the strongly convex case.

Theorem 3. Suppose that ψ∗ is `ψ∗-strongly convex. Then the restarted ODE with period

T =
√

er2

`ψ∗`f
guarantees that for all k ≥ 0 and all t ∈ [Tk + 1, Tk+1],

f(X(t))− f ? ≤ T 2e−
t
T (f(x0)− f ?).

In other words, f(X) converges exponentially to f ?, at a rate 1
T

=
√

er2

`ψ∗`f
. Note, however,

that this method requires previous knowledge of the strong convexity parameter `f .
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Proof. We have for all t ≥ Tk,

f(X(t))− f ? ≤ r2

(t− Tk)2
Dψ∗(Z(Tk), z

?) by Theorem 2,

≤ r2

`ψ∗2(t− Tk)2
‖X(Tk)− x?‖2 by strong convexity of ψ∗,

≤ r2

`ψ∗`f (t− Tk)2
(f(X(Tk))− f ?) by strong convexity of f .

Thus using our choice T =
√

er2

`ψ∗`f
, we have f(X(Tk+1))− f ? ≤ f(X(Tk))−f?

e
, so by induction

f(X(Tk))− f ? ≤ e−k(f(x0)− f ?), and for t ∈ [Tk + 1, Tk+1],

f(X(t))− f ? ≤ r2

`ψ∗`f
(f(X(Tk))− f ?)

≤ r2

`ψ∗`f
e−k (f(x0)− f ?)

≤ er2

`ψ∗`f
e−

t
T (f(x0)− f ?) since t ≤ (k + 1)T

= T 2e−
t
T (f(x0)− f ?),

3.5 Non-differentiable objective functions

In this section, we consider the case in which the objective function is non-differentiable. One
such case of particular interest is composite optimization, in which the objective function can
be decomposed into the sum of two terms f = f1 +f2 where f1 is differentiable with Lipschitz
gradient, and f2 is a general convex function; this model covers many problems in machine
learning, such as `1-regularized regression, and many algorithms have been developed for
composite optimization in discrete time, for example [24], as well as continuous time, for
example [4]. In this section, we discuss how the Lyapunov argument can be extended to
non-differentiable functions. More precisely, assume that f is a closed and proper convex
function (not necessarily differentiable), and denote by ∂f(x) the subdifferential of f at x
(a closed and convex set). A natural way to extend the ODE (1.1) to this non-differentiable
case is to replace the dual differential equation Ż(t) = − t

r
∇f(X(t)) by the differential

inclusion Ż(t) ∈ − t
r
∂f(X(t)). As we will see, this may not suffice to guarantee that the

energy function V decreases along continuous solution trajectories. As observed by [32], the
directional derivative f ′(X; Ẋ) plays a central role in deriving the correct dynamics in the
non-differentiable case.
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The directional derivative of f at x in the direction y is defined by

f ′(x; y) = lim
ε→0, ε>0

f(x+ εy)− f(x)

ε
,

where the limit can be +∞. It exists at any point x in the effective domain of f , and is
a positively homogeneous convex function of y, see Theorem 23.1 in [30]. Additionally, we
have the following connection between the directional derivative and the subdifferential: By
Theorem 23.4 in [30] we have that for all x in the interior of the domain of f (denoted
int dom f), ∂f(x) is a non-empty bounded set, and

f ′(x; y) = sup
g∈∂f(x)

〈g, y〉 . (3.8)

Thus we can associate to f ′(x; y) the set of subgradients which achieve the maximum (the
supremum is attained since ∂f(x) is a compact set in this case). We will denote this set

d(x; y) = arg max
g∈∂f(x)

〈g, y〉 .

Theorem 4. Consider the energy function t 7→ V (X(t), Z(t), t) = t2

r2
(f(X(t)) − f ?) +

Dψ∗(Z(t), z?), and suppose that (X(t), Z(t)) is a continuous and differentiable solution tra-
jectory of the ODE {

Ż ∈ − t
r
d(X, Ẋ)

Ẋ = r
t
(∇ψ∗(Z)−X).

Then the energy function is differentiable and d
dt
V (X(t), Z(t), t) ≤ 0.

Since the energy function is decreasing, any continuous and differentiable solution will
satisfy f(X(t))− f ? = O(1/t2) by a similar argument to Theorem 2. Note however that we
do not discuss existence of such solutions in this case.

Proof. To prove that the energy function is differentiable, consider the difference quotient,
defined for ε > 0,

∆t(ε) =
V (t+ ε)− V (t)

ε

=
t2

r2

f(X(t+ ε))− f(X(t))

ε
+

2t+ ε

r2
(f(X(t+ ε))− f?) +

Dψ∗(Z(t+ ε), z?)−Dψ∗(Z(t), z?)

ε
.

Using the fact that a convex function is locally Lipschitz (so that f(x+ o(ε)) = f(x) + o(ε)),
and that Dψ∗(Z(t), z?) is differentiable, we have

∆t(ε) =
t2

r2

f(X(t) + εẊ(t)) + o(ε)− f(X(t))

ε
+

2t+ ε

r2
(f(X(t)) + o(1)− f?) +

d

dt
Dψ∗(Z(t), z?) + o(1)

=
t2

r2

f(X(t) + εẊ(t))− f(X(t))

ε
+

2t

r2
(f(X(t))− f?) +

d

dt
Dψ∗(Z(t), z?) + o(1). (3.9)
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The derivative of the Bregman divergence in (3.9) is

d

dt
Dψ∗(Z(t), z?) =

〈
Ż(t),∇ψ∗(Z(t))−∇ψ∗(z?)

〉
=

〈
Ż(t), X(t) +

t

r
Ẋ(t)− x?

〉
.

The first term in (3.9) converges, as ε→ 0, to f ′(X; Ẋ). Combining the two limits, we have
that the limit of ∆t(ε) exists and

lim
ε→0, ε>0

∆t(ε) =
t2

r2
f ′(X(t); Ẋ(t)) +

2t

r2
(f(X(t))− f ?) +

〈
Ż(t), X(t) +

t

r
Ẋ(t)− x?

〉
,

and if we let Ż(t) = − t
r
g(t), then

lim
ε→0, ε>0

∆t(ε) ≤
t2

r2

(
f ′(X; Ẋ)−

〈
g, Ẋ

〉)
+
t

r
(f(X)− f ? − 〈g,X − x?〉), (3.10)

where we used the assumption that r ≥ 2. Note that if Ż satisfies the differential inclusion
Ż(t) ∈ − t

r
∂f(X(t)) (in other words, g(t) is a subgradient of f at X(t)), then the second

term in inequality (3.10) is non-positive by definition of a subgradient, but the first term

f ′(X; Ẋ) −
〈
g, Ẋ

〉
is non-negative by (3.8), and one cannot conclude that the energy is

decreasing. This motivates our choice of the subgradient. Indeed, when Ż(t) ∈ − t
r
d(X; Ẋ)

(in other words, g(t) is a subgradient of f at X(t) that maximizes the linear functional
〈·, Ẋ(t)〉), the first term in inequality (3.10) is non-positive, therefore limε→0, ε>0 ∆t(ε) ≤ 0,
which concludes the proof.
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Chapter 4

Equivalent formulations

In this chapter, we give equivalent formulations of ODE (1.1), which allows us to give different
interpretations.

4.1 Averaging formulation

Starting from the equation Ẋ = r
t
(∇ψ∗(Z(t)) − X(t)), we can multiply both sides by tr

r

and rearrange to obtain tr

r
Ẋ(t) + tr−1X(t) = tr−1∇ψ∗(Z(t)). Integrating from 0 to t, and

observing that tr

r
Ẋ(t) + tr−1X(t) is the time derivative of tr

r
X(t), we have

tr

r
X(t) =

∫ t

0

τ r−1∇ψ∗(Z(τ))dτ.

Finally, dividing by tr

r
, we have

X(t) =
r

tr

∫ t

0

τ r−1∇ψ∗(Z(τ))dτ =

∫ t
0
τ r−1∇ψ∗(Z(τ))dτ∫ t

0
τ r−1dτ

.

Therefore the primal variable X(t) can be interpreted as a weighted average of the trajectory
∇ψ∗(Z(τ)), τ ∈ [0, t], with time-varying weights w(τ) = τ r−1. This interpretation formalizes
a connection between acceleration and averaging, as observed in [16] for the unconstrained
quadratic case. This also provides an intuitive interpretation of the parameter r: it controls
the weights in the expression of X. A higher value of r puts larger weights on the recent
points ∇ψ∗(Z(t)).

The accelerated mirror descent ODE can then be written in the equivalent form:
Ż = −η(t)∇f (X(t)) , η(t) = t

r

X(t) =
∫ t
0 w(τ)∇ψ∗(Z(τ))dτ∫ t

0 w(τ)dτ
, w(τ) = τ r−1

X(0) = x0, Z(0) = z0 with ∇ψ∗(z0) = x0

(4.1)
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E E∗

X

∇ψ∗

∂ψ

Z(t) − t
r
∇f(X(t))

X(t)

Figure 4.1: Illustration of the accelerated mirror descent ODE. The dual variable Z evolves
in the dual space E∗, and accumulates gradient at a rate η(t) = t

r
, and the primal variable

X(t) is obtained by averaging the mirrored trajectory ∇ψ∗(Z(τ)), τ ∈ [0, t].

Here Z is a dual variable which accumulates the gradient of f , at a rate η(t) = t
r
, and X

is a weighted average of the “mirrored” dual trajectory ∇ψ∗(Z(τ)), τ ∈ [0, t], with weight
function w(τ) = τ r−1. This is illustrated in Figure 4.1. We also note that since ∇ψ∗(Z(τ))
remains in X for all τ , so does X, by convexity of the feasible set X . This provides an
alternate, simple proof of the viability of the solution (last part of Theorem 1).

Generalized weighting

Motivated by the averaging representation (4.1), it is natural to ask whether a different
averaging scheme can guarantee the same O(1/t2) convergence rate. One way to achieve

this is to start from a given averaging scheme, X(t) =
∫ t
0 w(τ)∇ψ∗(Z(τ))dτ∫ t

0 w(τ)
for some positive,

continuous, increasing function of time w : R+ → R+, and design the dynamics of Z in order
to guarantee that the energy function

V (X(t), Z(t), t) =
t2

r2
(f(X(t))− f ?) +Dψ∗(Z(t), z?),

is decreasing. Taking the time-derivative of V , we have

d

dt
V (X(t), Z(t), t) =

2t

r2
(f(X)− f ?) +

t2

r2

〈
∇f(X), Ẋ

〉
+
〈
Ż,∇ψ∗(Z)− x?

〉
.

LetW (t) =
∫ t

0
w(τ)dτ . Then using the assumption onX, we haveX(t)W (t) =

∫ t
0
w(τ)∇ψ∗(Z(τ))dτ ,

and taking time derivatives, we have ẊW + Xw = w∇ψ∗(Z), that is, for all t > 0,
Ẋ = w

W
(∇ψ∗(Z)−X). Using this expression of Ẋ, the energy derivative becomes

d

dt
V (X(t), Z(t), t) =

2t

r2
(f(X)− f ?) +

t2

r2

w

W
〈∇f(X),∇ψ∗(Z)−X〉+

〈
Ż,∇ψ∗(Z)− x?

〉
.
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In order to eliminate the ∇ψ∗(Z) term, we choose Ż = − w(t)
W (t)

t2

r2
∇f(X). Then,

d

dt
V (X(t), Z(t), t) =

2t

r2
(f(X)− f ?)− t2

r2

w(t)

W (t)
〈∇f(X), X − x?〉

≤ 2t

r2
(f(X)− f ?)− t2

r2

w(t)

W (t)
(f(X)− f ?)

= − t
2

r2

(
w(t)

W (t)
− 2

t

)
(f(X)− f ?).

Therefore, if w satisfies the condition

w(t)

W (t)
≥ 2

t
, (4.2)

then V is a Lyapunov function. The resulting generalized accelerated mirror descent dynam-
ics can be given in these two equivalent forms:

Ż = − w(t)
W (t)

t2

r2
∇f(X)

X =
∫ t
0 w(τ)∇ψ∗(Z(τ))dτ

W (t)

∇ψ∗(Z(0)) = x0


Ż = − w(t)

W (t)
t2

r2
∇f(X)

Ẋ = w(t)
W (t)

(∇ψ∗(Z)−X)

X(0) = x0, ∇ψ∗(Z(0)) = x0

(4.3)

where the functions w(t) and W (t) =
∫ t

0
w(τ)dτ satisfy the following assumption:

Assumption 1. The weight function w : R+ → R+ is assumed to be non-negative, contin-
uous and increasing, and such that the function a(t) = w(t)

W (t)
is decreasing, bounded below by

2
t

for all t > 0.

Proving the existence and uniqueness of the solution for this generalized weighting scheme
requires additional assumptions on the weight function (to guarantee that the derivatives

are well behaved in the neighborhood of 0). One sufficient condition is that a(t) = o(t−
3
2 ) at

0 (the argument is a straightforward generalization of the proof of Theorem 1).
Next, we describe a method to construct a weight function w that satisfies the conditions

of Assumption 1. Let w(t)
W (t)

= a(t). Then writing d
dt

lnW (t) = a(t) and integrating from

1 to t, we have W (t)
W (1)

= e
∫ t
1 a(τ)dτ , and w(t)

w(1)
= a(t)

a(1)
e
∫ t
1 a(τ)dτ . The time derivative of w(t) is

w(1)e
∫ t
1 a(τ)dτ (a′(t) + a2(t)). Therefore the conditions of Assumption 1 are satisfied whenever

w(t) is of the form

w(t) = w(1)
a(t)

a(1)
e
∫ t
1 a(τ)dτ ,

and a : R+ → R+ is a non-negative, decreasing, differentiable function with a(t) ≥ 2
t

and
a(t) = o

(
1
t2

)
as t tends to 0. Note that the expression of w is defined up to the constant

w(1), which reflects the fact that the conditions of Assumption 1 are scale-invariant (if the
conditions hold for a function w, then they hold for αw for all α > 0).
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Example 1. Take a(t) = β
t

with β ≥ 2. Then a(t) satisfies the conditions discussed above,

and w(t) = a(t)
a(1)

e
∫ t
1 a(τ)dτ = β/t

β
eβ ln t = tβ−1. The dynamics are then given by one of the

following equivalent systems:
Ż = −βt

r2
∇f(X)

X =
∫ t
0 τ

β−1∇ψ∗(Z(τ))dτ∫ t
0 τ

β−1dτ

∇ψ∗(Z(0)) = x0


Ż = −βt

r2
∇f(X)

Ẋ = β
t
(∇ψ∗(Z)−X)

X(0) = x0, ∇ψ∗(Z(0)) = x0.

4.2 Primal representation and damped nonlinear

oscillators

In this section, we will assume that ψ∗ is twice differentiable on all of E∗, and we will denote

its Hessian at a point z ∈ E∗ by ∇2ψ∗(z), defined as ∇2ψ∗(z)i,j = ∂2ψ∗(z)
∂zi∂zj

. This assumption

is not particularly restrictive, see Appendix A for examples. Writing t
r
Ẋ + X = ∇ψ∗(Z)

and taking the time-derivative, we have

t

r
Ẍ +

1

r
Ẋ + Ẋ = ∇2ψ∗(Z)Ż = − t

r
∇2ψ∗(Z)∇f(X).

Multiplying both sides by r
t
, we have

Ẍ +
r + 1

t
Ẋ +∇2ψ∗(Z)∇f(X) = 0. (4.4)

The initial condition for Ẋ is Ẋ(0) = 0. To prove this, one can argue that for all δ > 0, the
solution to the smoothed ODE (3.3) satisfies Ẋδ(0) = r

δ
(∇ψ∗(z0)−x0) = 0, thus Ẋ(0) is also

equal to zero since the solution X is a limit point of the equi-Lipschitz family of solutions
(Xδ).

ODE (4.4) can be interpreted as a damped nonlinear oscillator: If we ignore the Hessian
term (in other words when ∇2ψ∗(Z) is the identity, which corresponds to the unconstrained
Euclidean case), then the ODE becomes Ẍ + r+1

t
Ẋ + ∇f(X) = 0. It can be interpreted

as describing the evolution of a particle with position X, velocity Ẋ and acceleration Ẍ =
−∇f(X) − r+1

t
Ẋ. The first term is a conservative force due to the scalar potential f , and

the second term is a dissipative force proportional to the velocity, which can be thought
of as a viscous friction term. Some properties of this system have been recently studied
in [3]. Note that the damping constant r+1

t
is time-dependent, and vanishes as time tends

to infinity. The parameter r can then be interpreted as a damping coefficient. Intuitively,
the larger r, the more energy is dissipated. This is illustrated in Figure 4.2, which shows the
solution trajectory of the ODE on a finite time interval, in a simplex-constrained example,
with different values of r. The Hessian term ∇2ψ∗(Z) is a non-linear transformation that
applies to the gradient, in order to keep the trajectory in the feasible set. Remarkably, this
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transformation is not static, it depends on the value of the dual variable, hence varies with
time. Intuitively, whenever ∇ψ∗(Z) approaches the (relative) boundary of the feasible set,
the term ∇2ψ∗(Z) should transform the gradient so that it points inside the feasible set.

(a) r = 2 (b) r = 20 (c) r = 200

Figure 4.2: Solution trajectories of the accelerated mirror descent ODE on a finite time
interval t ∈ [0, T ], for simplex-constrained quadratic minimization, with different values
of the parameter r. Larger values of r result in more energy dissipation, and suppress
oscillations, but because the time-horizon is finite, too much energy dissipation means that
the trajectory does not make enough progress within [0, T ], as can be seen in plot (c). This
example shows that the “best damping” is not necessarily obtained for smaller values of r,
as one could think from the bound of Theorem 2.

In order to have a fully primal representation of the ODE, we seek to eliminate the dual
variable Z. By duality of the subdifferentials (Appendix A), we have x = ∇ψ∗(z) if and only
if z ∈ ∂ψ(x). We have Ẋ = t

r
(∇ψ∗(Z)−X), thus Z ∈ ∂ψ( t

r
Ẋ +X). Note that, in general,

X and Ẋ do not entirely determine Z when ψ is not differentiable. However, as discussed in
Proposition 3 in the Appendix, if we assume that ψ is the restriction to X of a differentiable
function Ψ, i.e. ψ(x) = Ψ(x) + δX (x), then, ∇2ψ∗(∂ψ(x)) does not depend on the choice of
subgradient in ∂ψ(x), therefore

∇2ψ∗(Z) = ∇2ψ∗
(
∂ψ

(
t

r
Ẋ +X

))
= ∇2ψ∗

(
∇Ψ

(
t

r
Ẋ +X

))
.

Plugging this expression in (4.4), we have{
Ẍ + r+1

t
Ẋ +∇2ψ∗ ◦ ∇Ψ( t

r
Ẋ +X)∇f(X) = 0

X(0) = x0, Ẋ(0) = 0
(4.5)

This ODE has been studied independently by Wibisono and Wilson in [35]. In particular,
they give an interpretation of the ODE as the Euler-Lagrange equation associated to a
particular Lagrangian function.
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If we define Z̃ = t
r
Ẋ +X = ∇ψ∗(Z), then this ODE can also be written more concisely

as 
˙̃Z + t

r
∇2ψ∗ ◦ ∇Ψ(Z̃)∇f(X) = 0

X(t) =
∫ t
0 τ

r−1Z̃(τ)dτ∫ t
0 τ

r−1dτ

X(0) = Z̃(0) = x0

(4.6)

where X and Z̃ are both primal variables.
A similar derivation can be made for the mirror descent ODE (2.1), as follows: writing

X = ∇ψ∗(Z) and taking the time derivative, we have Ẋ = ∇2ψ∗(Z)Ż = −∇2ψ∗(Z)∇f(X) =
−∇2ψ∗ ◦ ∇Ψ(X)∇f(X), which leads to the ODE{

Ẋ +∇2ψ∗ ◦ ∇Ψ(X)∇f(X) = 0

X(0) = x0

(4.7)

The operator∇2ψ∗◦∇Ψ appears in both primal representations (4.5) and (4.7). For some
choices of distance generating functions, ∇2ψ∗ ◦ ∇Ψ has a simple expression. In the next
section, we give three such examples: one for unconstrained Euclidean optimization, one
for positive-orthant-constrained optimization, and one for simplex-constrained optimization,
using the negative entropy as a distance generating function.

4.3 Examples of accelerated mirror descent dynamics

Unconstrained Euclidean optimization Suppose that X = Rn and take ψ∗(z) = 1
2
‖z‖2

2.
Then ∇ψ∗(z) = z and the Hessian at any point is equal to the identity, thus

∇2ψ∗ ◦ ∇ψ(x) = In

for all x ∈ Rn. Therefore the mirror descent ODE (4.7) reduces to the gradient descent ODE
Ẋ+∇f(X) = 0, and the accelerated mirror descent ODE (4.5) reduces to the Nesterov ODE
studied in [32], Ẍ + r+1

t
Ẋ +∇f(X) = 0. The latter can be interpreted as a damped non-

linear oscillator (the non-linearity comes from the gradient term), with vanishing damping
coefficient r+1

t
.

Positive-orthant-constrained dynamics Now suppose that X is the positive orthant
Rn

+, and consider the negative entropy function ψ(x) =
∑

i xi lnxi. Then its dual is ψ∗(z) =∑
i e
zi−1, and

∇ψ(x)i = 1 + lnxi, ∇2ψ∗(z)i,j = δji e
zi−1.

Thus for all x ∈ Rn
+,

∇2ψ∗ ◦ ∇ψ(x) = diag(x).



CHAPTER 4. EQUIVALENT FORMULATIONS 23

Therefore, the mirror descent ODE in its primal form (4.7) reduces to{
∀i, Ẋi = −Xi∇f(X)i

X(0) = x0

and the accelerated mirror descent ODE (4.6) can be written in one of its equivalent forms:

{
∀i, Ẍi + r+1

t
Ẋi = −( t

r
Ẋi +Xi)∇if(X)

X(0) = x0, Ẋ(0) = 0


∀i, ˙̃Zi = −Z̃i∇if(X)

X(t) =
∫ t
0 τ

r−1Z̃(τ)dτ∫ t
0 τ

r−1dτ

X(0) = Z̃(0) = x0

For the mirror descent ODE, one can verify that the solution remains in the positive orthant
since Ẋ tends to 0 as Xi approaches the boundary of the feasible set. Similarly for the

accelerated version, ˙̃Z tends to 0 as Z̃ approaches the boundary, thus Z̃ remains feasible,
and so does X by convexity.

Simplex-constrained entropic optimization: the replicator dynamics. Now sup-
pose that X is the n-simplex, X = ∆ = {x ∈ Rn

+ :
∑n

i=1 xi = 1}. Consider the distance-
generating function ψ(x) = Ψ(x) + δX (x), where Ψ is the negative entropy function, Ψ(x) =∑n

i=1 xi lnxi. Then its dual is ψ∗(z) = ln (
∑n

i=1 e
zi) (see Appendix A.4), defined on E∗, and

we have

∇Ψ(x)i = 1 + lnxi, ∇ψ∗(z)i =
ezi∑
k e

zk
, ∇2ψ∗(z)ij =

δji e
zi∑

k e
zk
− eziezj

(
∑

k e
zk)2 .

This example can be used to illustrate the role of the Hessian term in equation (4.4). Sup-
pose that ∇ψ∗(Z) approaches the relative boundary of the feasible set, say eZi0 approaches 0.

Then (∇2ψ∗(Z)∇f(X))i0 = e
Zi0∑
k e

Zk

(
∇i0f(X)−

〈
∇f(X), eZ∑

eZk

〉)
, also approaches 0. Fig-

ure 4.3 displays the vector field ∇2ψ∗(Z)∇f(X) (which we can think of as the modified
potential) for different values of Z.

To derive the primal representation of the ODE, it is simple to calculate the expression

∇2ψ∗ ◦ ∇Ψ(x)ij =
δjixi∑
k xk
− xixj

(
∑

k xk)
2 = δjixi − xixj.

Therefore, the mirror descent ODE in its primal form (4.7) reduces to the following{
∀i, Ẋi +Xi (∇if(X)− 〈X,∇f(X)〉) = 0

X(0) = x0

(4.8)

This ODE is known as the replicator dynamics in the evolutionary game theory literature,
see for example [34]. It is used to model large population dynamics, that is, one considers
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Figure 4.3: Vector field X 7→ ∇2ψ∗(Z)∇f(X) for different values of Z (taken along a solution
trajectory for an example problem with solution on the relative boundary of the simplex).
As ∇ψ∗(Z) approaches the relative boundary, the vector field changes in such a way that
the component that is orthogonal to the boundary vanishes.

a population of players, and a finite action set {1, . . . , n}, such that at time t, Xi(t) is the
proportion of players who adopt action i. Then ∇fi(X) is the cost of action i given the
distribution X. This can be used to model competition for resources in, e.g., biological
systems [34] or traffic systems [15]: if a resource i is used by a larger proportion of players,
its cost increases.

The ODE is called replicator as it can be obtained using a simple model of adaptive play
as follows: at time t, players are randomly matched in pairs, and if their current actions
are, respectively, i and j, then the first player will switch to j (i.e. replicate the action
of the second player) with a rate proportional to ∇jf(X) − ∇if(X), and similarly for the
second player. As a consequence, the rate of increase of Xi is simply the sum over all
actions j of XiXj (the probability of the match (i, j)) multiplied by the difference in costs
∇jf(X)−∇if(X), i.e.

Ẋi =
n∑
j=1

XiXj(∇jf(X)−∇if(X))

= Xi

(
n∑
j=1

Xj(∇jf(X)−∇if(X))

)
= Xi (〈X,∇f(X)〉 − ∇if(X)) .

Similarly, the accelerated mirror descent ODE in its primal forms (4.5) and (4.6) reduces
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to the following{
∀i, Ẍi + r+1

t
Ẋi + ( t

r
Ẋi +Xi)

(
∇if(X)−

〈
Z̃,∇f(X)

〉)
= 0

X(0) = x0, Ẋ(0) = 0
∀i, ˙̃Zi + Z̃i

(
∇if(X)−

〈
Z̃,∇f(X)

〉)
= 0

X =
∫ t
0 τ

r−1Z̃(τ)dτ∫ t
0 τ

r−1dτ

Z̃(0) = x0

Using the second primal form, the accelerated version of the replicator dynamics can be
interpreted as follows: the usual replicator update is performed on the variable Z̃, but the
gradient is evaluated at X(t), which is obtained by averaging.
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Chapter 5

Discrete Optimization

5.1 Forward-backward Euler discretization

Next, we show that with a careful discretization of the continuous-time dynamics, we can
obtain a general family of accelerated mirror descent methods for constrained optimization.
Using a mixed Euler scheme (forward in the Z variable, and backward in the X variable),
see e.g. Chapter 2 in [12], we can discretize the ODE system (1.1) using a step size

√
s

as follows. Given a solution (X,Z) of the ODE (1.1), let tk = k
√
s, and x(k) = X(tk) =

X(k
√
s). Approximating Ẋ(tk) with X(tk+

√
s)−X(tk)√
s

, and, similarly, Ż(tk) with Z(tk+
√
s)−Z(tk)√
s

,
we propose the discretization{

z(k+1)−z(k)√
s

= −k
√
s

r
∇f(x(k)),

x(k+1)−x(k)√
s

= r
(k+1)

√
s

(
∇ψ∗(z(k+1))− x(k+1)

)
.

(5.1)

The second equation can be rewritten as x(k+1) =
(
x(k) + r

k+1
∇ψ∗(z(k+1))

)
/
(
1 + r

k+1

)
(note

the independence on s, due to the time-scale invariance of the first ODE). In other words,
x(k+1) is a convex combination of ∇ψ∗(z(k)) and x(k) with coefficients λk+1 = r

r+k+1
and

1− λk+1 = k+1
r+k+1

. To summarize, our first discrete scheme can be written as{
z(k+1) = z(k) − ks

r
∇f(x(k)),

x(k+1) = λk+1∇ψ∗(z(k+1)) + (1− λk+1)x(k), λk = r
r+k

.
(5.2)

Note that since ∇ψ∗ maps into X , starting from x(0) ∈ X guarantees that x(k) remains
in X for all k.

An equivalent form of the mirror descent update When the primal distance gener-
ating function ψ is differentiable, one has that z = ∇ψ(z̃) if and only if z̃ = ∇ψ∗(z). Thus,
letting z̃(k) = ∇ψ∗(z(k)), we can rewrite the dual variable update z(k) in terms of z̃(k) as



CHAPTER 5. DISCRETE OPTIMIZATION 27

follows:

z̃(k+1) = ∇ψ∗(z(k+1))

= ∇ψ∗
(
z(k) − ks

r
∇f(x(k))

)
= ∇ψ∗

(
∇ψ(z̃(k))− ks

r
∇f(x(k))

)
Then by duality of subgradients, (Theorem 23.5 in [30]), we have that∇ψ∗(z) = arg maxx∈X 〈z, x〉−
ψ(x) = arg minx∈X ψ(x)− 〈z, x〉, thus

z̃(k+1) = arg min
x∈X

ψ(x)−
〈
∇ψ(z̃(k))− ks

r
∇f(x(k)), x

〉
= arg min

x∈X

ks

r

〈
∇f(x(k+1)), x

〉
+Dψ(x, z̃(k)).

In this case, the discretization can be written purely in terms of the primal variables x(k)

and z̃(k) as follows{
x(k+1) = λk+1z̃

(k+1) + (1− λk+1)x(k), λk = r
r+k

,

z̃(k+1) = arg minx∈X
ks
r

〈
∇f(x(k+1)), x

〉
+Dψ(x, z̃(k)).

We will eventually modify this scheme in order to be able to prove the desired O(1/k2)
convergence rate. However, we start by analyzing this version. Motivated by the continuous-
time Lyapunov function (3.1), and using the correspondence t ≈ k

√
s, consider the potential

function, defined for k ≥ 1,

E(k) =
k2s

r2
(f(x(k−1))− f ?) +Dψ∗(z

(k), z?).

Then we have

E(k+1) − E(k) =
(k + 1)2s

r2
(f(x(k))− f ?)− k2s

r2
(f(x(k−1))− f ?) +Dψ∗(z

(k+1), z?)−Dψ∗(z
(k), z?)

=
k2s

r2
(f(x(k))− f(x(k−1))) +

s(1 + 2k)

r2
(f(x(k))− f ?) +Dψ∗(z

(k+1), z?)−Dψ∗(z
(k), z?).

And through simple algebraic manipulation, the last term can be bounded as follows

Dψ∗(z
(k+1), z?)−Dψ∗(z

(k), z?)

= Dψ∗(z
(k+1), z(k)) +

〈
∇ψ∗(z(k))−∇ψ∗(z?), z(k+1) − z(k)

〉
= Dψ∗(z

(k+1), z(k)) +

〈
k

r
(x(k) − x(k−1)) + x(k) − x?,−ks

r
∇f(x(k))

〉
≤ Dψ∗(z

(k+1), z(k)) +
k2s

r2
(f(x(k−1))− f(x(k))) +

ks

r
(f ? − f(x(k))).
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where the first equality is by definition of the Bregman divergence, the second equality is by
the discretization (5.2), and the last inequality is by convexity of f . Therefore we have

E(k+1) − E(k) ≤ −s[(r − 2)k − 1]

r2
(f(x(k))− f ?) +Dψ∗(z

(k+1), z(k)),

where the first term is negative whenever r ≥ 3, for all k ≥ 1. Comparing this expression
with the bound (3.2) on d

dt
V (X(t), Z(t), t) in the continuous-time case, we see that we obtain

an analogous bound, except for the additional Bregman divergence term Dψ∗(z
(k+1), z(k)),

and we cannot immediately conclude that E(k) is a Lyapunov function. This can be remedied
by a modification of the discretization scheme, described next.

5.2 Discrete-time accelerated mirror descent

In the expression (5.2) of x(k+1) = λk∇ψ∗(z(k+1)) + (1 − λk)x(k), we propose to replace x(k)

with x̃(k+1), obtained as a solution to a minimization problem

x̃(k+1) = arg min
x∈X

γs
〈
∇f(x(k)), x

〉
+R(x, x(k)),

where R is regularization function that satisfies the following assumptions: there exist 0 <
`R ≤ LR such that for all x, x′ ∈ E, `R

2
‖x− x′‖2 ≤ R(x, x′) ≤ LR

2
‖x− x′‖2.

In the Euclidean case, one can take R to be the squared Euclidean distance, R(x, x′) =
‖x−x′‖22

2
, in which case `R = LR = 1 and the x̃ update becomes a prox-update, or take

R(x, x′) = Dφ(x, x′) for some distance generating function φ which is `R-strongly convex and
LR-smooth, in which case the x̃ update becomes a mirror update. The resulting method is
summarized in Algorithm 1, and illustrated in Figure 5.1. This algorithm is a generalization
of Allen-Zhu and Orecchia’s interpretation of Nesterov’s method in [1], where x(k+1) is a
convex combination of a mirror descent update and a gradient descent update.

Algorithm 1 Accelerated mirror descent with distance generating function ψ∗, regularizer
R, step size s, and parameter r ≥ 3

1: Initialize x̃(0) = z̃(0) = x0.
2: for k ∈ N do
3: z̃(k+1) = arg minz̃∈X

ks
r

〈
∇f(x(k)), z̃

〉
+Dψ(z̃, z̃(k)) = ∇ψ∗(∇Ψ(z̃(k))− ks

r
∇f(x(k)))

(equivalently, z(k+1) = z(k) − ks
r
∇f(x(k)) and z̃(k+1) = ∇ψ∗(z(k+1)))

4: x̃(k+1) = arg minx̃∈X γs
〈
∇f(x(k)), x̃

〉
+R(x̃, x(k))

5: x(k+1) = λk+1z̃
(k+1) + (1− λk+1)x̃(k+1), with λk = r

r+k

6: end for
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z(k)

z(k+1)

−kr
s
∇f(x(k))

x(k)

z̃(k+1)

x̃(k+1)

x(k+1)

E E∗

X

∇ψ∗

∂ψ

Figure 5.1: Illustration of the accelerated mirror descent method in discrete time. The dual
variable z(k) is updated by taking a step in the direction of the negative gradient −∇f(x(k)),
with a rate k

r
. The corresponding primal variable is z̃(k+1) = ∇ψ∗(z(k+1)). The variable

x̃(k+1) is obtained by performing a prox update from x(k), then x(k+1) is updated by taking
a convex combination of z̃(k+1) and x̃(k+1).

5.3 Consistency of the modified scheme

One can show that given our assumptions on R, x̃(k+1) = x(k) +O(s). Indeed, we have

`R
2
‖x̃(k+1) − x(k)‖2 ≤ R(x̃(k+1), x(k)) ≤ R(x(k), x(k)) + γs

〈
∇f(x(k)), x(k) − x̃(k+1)

〉
≤ γs‖∇f(x(k))‖∗‖x̃(k+1) − x(k)‖

therefore ‖x̃(k+1) − x(k)‖ ≤ s2γ‖∇f(x(k))‖∗
`R

, which proves the claim. Using this observation, we
can show that the modified discretization scheme is consistent with the original ODE (1.1),
that is, the difference equations defining x(k) and z(k) converge, as s tends to 0, to the
ordinary differential equations of the continuous-time system (1.1). The difference equations
of Algorithm 1 are equivalent to (5.1) in which x(k) is replaced by x̃(k+1), i.e.{

z(k+1)−z(k)√
s

= −k
√
s

r
∇f(x(k))

x(k+1)−x̃(k+1)√
s

= r
(k+1)

√
s
(∇ψ∗(z(k+1))− x(k+1)).

Now suppose there exist C1 functions (X,Z), defined on R+, such that X(tk) ≈ x(k)

and Z(tk) ≈ z(k) for tk = k
√
s. Then, using the fact that x̃(k) = x(k) + O(s), we have

x(k+1)−x̃(k+1)√
s

= x(k+1)−x(k)√
s

+O(
√
s) ≈ X(tk+

√
s)−X(tk)√
s

+O(
√
s) = Ẋ(tk)+O(

√
s), and similarly,
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z(k+1)−z(k)√
s

≈ Ż(tk) + o(1), therefore the difference equation system can be written as{
Ż(tk) + o(1) = − tk

r
∇f(X(tk))

Ẋ(tk) +O(
√
s) = r

tk+
√
s
(∇ψ∗(Z(tk +

√
s))−X(tk +

√
s))

which converges to the ODE (1.1) as s→ 0.

5.4 Convergence rate

To prove convergence of the algorithm, consider the modified potential function

Ẽ(k) =
k2s

r2
(f(x̃(k))− f ?) +Dψ∗(z

(k), z?).

Lemma 2. If γ ≥ LRLψ∗ and s ≤ `R
2Lfγ

, then for all k ≥ 0,

Ẽ(k+1) − Ẽ(k) ≤ (2k + 1− kr)s
r2

(f(x̃(k+1))− f ?).

As a consequence, if r ≥ 3, Ẽ is a Lyapunov function for k ≥ 1.

This lemma is proved in the appendix.

Theorem 5. The discrete-time accelerated mirror descent Algorithm 1 with parameter r ≥ 3
and step sizes γ ≥ LR

Lψ∗
, s ≤ `R

2Lfγ
, guarantees that for all k > 0,

f(x̃(k)))− f ? ≤ r2

sk2
Ẽ(1) ≤ r2Dψ∗(z0, z

?)

sk2
+
f(x0)− f ?

k2
.

Proof. The first inequality follows immediately from Lemma 2: k2s
r2

(f(x̃(k)))− f ?) ≤ Ẽ(k) ≤
Ẽ(1). The second inequality follows from a simple bound on Ẽ(1), proved below. By Lemma 2
again, we have

Ẽ(1) ≤ Ẽ(0) +
s

r2
(f(x̃(1))− f ?)

= Dψ∗(z
(0), z?) +

s

r2
(f(x̃(1))− f ?)

and to conclude, it suffices to show that f(x̃(1)) ≤ f(x(0)). Recall that x̃(1) = arg minx̃∈X γs
〈
∇f(x(0)), x̃

〉
+

R(x̃, x(0)), thus

γs
〈
∇f(x(0)), x̃(1)

〉
+R(x̃(1), x(0)) ≤ γs

〈
∇f(x(0)), x(0)

〉
(5.3)
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Therefore,

f(x̃(1))− f(x(0))

≤
〈
∇f(x(0)), x̃(1) − x(0)

〉
+
Lf
2
‖x̃(1) − x(0)‖2 by Lemma 4

≤
〈
∇f(x(0)), x̃(1) − x(0)

〉
+
Lf
`R
R(x̃(1), x(0)) by assumption on R

≤
〈
∇f(x(0)), x̃(1) − x(0)

〉
+

1

γs
R(x̃(1), x(0)) using that

Lf
`R
≤ 1

γs

and we conclude by applying (5.3).

5.5 Example: accelerated entropic descent

We give an instance of Algorithm 1 for simplex-constrained problems. Suppose that X =
∆n = {x ∈ Rn

+ :
∑n

i=1 xi = 1} is the n-simplex. Taking ψ to be the negative entropy on ∆,
we have for x ∈ X , z ∈ E∗,

ψ(x) =
n∑
i=1

xi lnxi, ψ∗(z) = ln

(
n∑
i=1

ezi

)
, ∇ψ(x)i = 1 + lnxi, ∇ψ∗(z)i =

ezi∑n
j=1 e

zj
.

The resulting mirror descent update is a simple entropy projection and can be computed
exactly in O(n) operations, and ψ∗ can be shown to be 1-smooth w.r.t. ‖ · ‖∞, see for
example [6, 8]. For the second update, we take R(x, y) = Dφ(x, y) where φ is a smoothed
negative entropy function defined as follows: let ε > 0, and let

φ(x) = ε
n∑
i=1

(xi + ε) ln(xi + ε) + δ∆(x).

Although no simple expression is known for the mirror operator ∇φ∗(z) = arg maxx 〈z, x〉 −
φ(x), it can be solved efficiently, in O(n log n) time using a deterministic algorithm, or
O(n) expected time using a randomized algorithm, see [21]. Additionally, Dφ satisfies our
assumptions: φ is ε

1+nε
-strongly convex w.r.t. ‖·‖1, and 1-smooth w.r.t. ‖·‖∞. The resulting

accelerated mirror descent method on the simplex can then be implemented efficiently, and
by Theorem 5 it is guaranteed to converge in O(1/k2) whenever γ ≥ 1 and s ≤ ε

2(1+nε)Lfγ
.

5.6 Restarting the discrete algorithm

In this section, we adapt the restarting heuristics proposed by O’Donoghue and Candès
in [28], and Su et al. in [32], and propose new restarting heuristics. In Section 3.4, we
motivated restarting for strongly convex functions, by observing that restarting at fixed
intervals (determined by the strong convexity parameter of the objective), allows us to
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recover linear convergence. Even when the function is not strongly convex, restarting can
be intuitively motivated by the observation that because of the “memory” in the solution
(both in the dual variable Z(t) = Z(0) +

∫ t
0
−τ∇f(X(τ)), which accumulates gradients, and

the primal variable due to averaging), the trajectory may point in a “bad direction” at a
given time t. Thus, one can restart the ODE whenever a given condition is met, by resetting
time to zero and reinitializing it at the current point, effectively wiping the memory of the
solution.

Recall that in continuous-time, the algorithm is restarted at a given time Tk, by solving a
new ODE given by (3.7), in which time is shifted by −Tk, and the dual variable is reinitialized
to have ∇ψ∗(Z(Tk)) = X(T−k ) (to ensure continuity of the primal trajectory).

We define restarting in discrete time similarly to the continuous time: The algorithm is
restarted at time K simply by shifting future time by −K, and setting the dual variable
z(k+1) such that ∇ψ∗(z(k+1)) coincides with the current iterate x(k+1). This is summarized in
Algorithm 2, where we give a general template for restarted algorithms; specific restarting
conditions are discussed below.

Algorithm 2 Accelerated mirror descent with restart

1: Initialize K = 0, x̃(0) = z̃(0) = x0.
2: for k ∈ N do
3: z̃(k+1) = arg minz̃∈X

(k−K)s
r

〈
∇f(x(k)), z̃

〉
+Dψ(z̃, z̃(k))

(equivalently, z(k+1) = z(k) − (k−K)s
r
∇f(x(k)) and z̃(k+1) = ∇ψ∗(z(k+1)))

4: x̃(k+1) = arg minx̃∈X γs
〈
∇f(x(k)), x̃

〉
+R(x̃, x(k+1))

5: x(k+1) = λk−K+1z̃
(k+1) + (1− λk−K+1)x̃(k+1), with λk = r

r+k

6: if Restart condition then
7: K ← k
8: z̃(k+1) ← x(k+1)

9: end if
10: end for

Many restarting conditions have been proposed in recent literature, motivated by uncon-
strained continuous-time optimization. We review and briefly discuss some of these condi-
tions, then propose a new condition motivated by the primal-dual form of ODE (1.1).

(i) Gradient restart condition [28]:
〈
x(k+1) − x(k),∇f(x(k))

〉
> 0. Intuitively, the algorithm

is restarted whenever the trajectory makes an acute angle with the gradient.

(ii) Function restart condition [28]: f(x(k+1)) ≥ f(x(k)). This condition is similar to the
gradient condition, since one has f(x(k+1)) ≥ f(x(k)) +

〈
∇f(x(k)), x(k+1) − x(k)

〉
by

convexity of f , thus the second condition is implied by the first.

(iii) Speed restart condition [32]: ‖x(k+1) − x(k)‖ < ‖x(k) − x(k−1)‖. This condition was
proposed by Su et al. in [32], and is motivated by the unconstrained Euclidean case:
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intuitively, the speed starts to decrease whenever (and the system starts losing momen-
tum) whenever the trajectory points in a bad direction.

(iv) Dual restarting:
〈
z(k+1),∇f(x(k))

〉
> 0. Intuitively, the algorithm is restarted whenever

the dual variable (which cumulates gradients), points in a bad direction with respect
to the current gradient.

We test these conditions numerically in Chapter 6, and discuss their qualitative differences.
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Chapter 6

Numerical experiments

To illustrate our results, we implement the accelerated mirror descent method proposed in
Algorithm 1, on simplex-constrained problems in Rn, n = 3, to be able to visualize the
simplex. We run the algorithm on a simple quadratic f(x) = 〈x− x?, Q(x− x?)〉 for a
random positive definite matrix Q, and a weakly convex function given by f(x) = g(x1 −
x?1)2 + (x2 − x3)2, where g(x) = min(x + α,max(0, x − α)). The solution set of the second
problem is the segment given by {x ∈ ∆ : x1 ∈ [x?1−α, x?1 +α] and x2 = x3}. We implement
the accelerated entropic descent algorithm proposed in Section 5.5, and include the (non-
accelerated) entropic descent for reference. We also implement the restarting heuristics
discussed in Section 5.6. The corresponding code and videos are available at the following
url: http://www.github.com/walidk/AcceleratedMirrorDescent.

The results are given in Figures 6.1, 6.2, and 6.3. Each figure contains four plots: the
first shows the value of the objective f(x(k))− f ? as a function of k, the second shows that
value of the Lyapunov function V (x(k), z(k), k) as a function of k, and the bottom plots show
the trajectory of the solution x(k) on the simplex viewed as a subset of R2 (bottom left) and
the trajectory (x(k), f(x(k))) on top of the surface of function values (bottom right). In the
trajectory plots, the dotted lines show the mirrored dual trajectory ∇ψ∗(z(k)). Finally, in
the weakly convex case, the set of minimizers is visualized as a solid black segment.

The accelerated mirror descent method exhibits a polynomial convergence rate, which is
empirically faster than the O(1/k2) rate predicted by Theorem 5, both in the strongly and
weakly convex cases. The experiments confirm that the Lyapunov function is decreasing for
the accelerated method, but not for the plain mirror descent method. It is worth noting that
restarting sometimes increases the value of the energy function, thus a different argument is
needed to analyze the convergence of these heuristics.

The method also exhibits oscillations around the set of minimizers. We observe that
increasing the parameter r seems to reduce the period of the oscillations, and results in
a trajectory that is initially slower, but faster for large k, see Figure 6.2. The restarting
heuristics alleviate the oscillation and empirically speed up the convergence. This observation
also holds when the solution is on the boundary of the feasible set, see Figure 6.3-a for an
example.

http://www.github.com/walidk/AcceleratedMirrorDescent
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(a) Strongly convex quadratic.

(b) Weakly convex function.

Figure 6.1: Accelerated mirror descent on the simplex, and restarting heuristics.
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Figure 6.2: Effect of the parameter r.

Figure 6.3: Effect of restarting when the solution is on the boundary.
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Finally, we observe that in the weakly convex case, different instances of the algorithm
converge to different limit points in the solution set, see Figure 6.2-b and 6.3-b. Our theoret-
ical results on ly prove convergence in function values, which proves that the distance to the
solution set d(x(k), S) converges to 0, but does not prove that the trajectory x(k) converges.
The experiments suggest that it does, and that the limit depends on the parameters of the
algorithm (initial condition and value of the parameter r).
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Chapter 7

Conclusion

By combining the Lyapunov argument that motivated mirror descent, and a recent ODE in-
terpretation [32] of Nesterov’s method, we propose a method to construct an energy function
tailored to a given constrained convex optimization problem. The energy function combines
a term that encodes the desired convergence rate, and a term that encodes the constraints
(the Bregman divergence term). We then derive an ODE which is tailored to that energy
function, and show existence, uniqueness and viability of its solutions. It turns out that
this ODE also has a simple interpretation as a coupling between a dual variable Z(t) which
cumulates gradients (similar to the original mirror descent method, but with an increasing
rate), and a primal variable X(t) obtained by averaging the mirrored dual ∇ψ∗(Z(t)).

By construction of the energy function, the solution trajectories converge to the set of
minimizers at a O(1/t2) rate. By discretizing the continuous-time dynamics, we obtain a
family of accelerated mirror descent methods and proved, using the same energy function,
an analogous O(1/k2) rate when the step size is small enough. This connection with the
continuous-time dynamics can provide intuition and insights into the behavior of the discrete-
time algorithm, and motivates a more detailed study of properties of the ODE system (1.1)
and its solutions, such as a characterization of the oscillatory behavior of the solution and
the effect of the parameter r, the convergence rates under additional assumptions such as
strong convexity, the convergence of trajectories when the minimizer is not unique, and a
rigorous study of the restarting heuristics.
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Appendix A

Bregman projections

A.1 Dual distance generating functions

We consider a closed, convex set X , and a pair of conjugate convex functions ψ, ψ∗ such
that ψ is closed and proper, and the effective domain of ψ is X . We denote X ∗ the effective
domain of ψ∗. By Fenchel’s duality theorem, ψ∗∗ coincides with ψ, and we have for all x ∈ E
and z ∈ E∗:

ψ∗(z) = sup
x∈E
〈z, x〉 − ψ(x), ψ(x) = sup

z∈E∗
〈z, x〉 − ψ∗(z).

Since ψ and ψ∗ are proper convex functions, they are both subdifferentiable on the relative
interior of their respective domains (Theorem 23.4 in [30]). And if we denote ∂ψ(x) the
subdifferential of ψ at x, then we have, by definition of a subgrdient,

z ∈ ∂ψ(x)⇔ ψ(x′)− 〈z, x′〉 ≥ ψ(x)− 〈z, x〉 ∀x′ ∈ E
⇔ x ∈ arg max

x′∈E
〈z, x′〉 − ψ(x′)

⇔ ψ∗(z) = 〈z, x〉 − ψ(x)

and switching the roles of ψ and ψ∗ (and using the fact that ψ∗∗ = ψ), we have the equivalence

ψ∗(z) + ψ(x) = 〈z, x〉 ⇔ z ∈ ∂ψ(x)⇔ x ∈ ∂ψ∗(z). (A.1)

In other words, ∂ψ and ∂ψ∗ are inverses of each other (in the sense of set valued mappings).

A.2 The mirror operator ∇ψ∗
Recall that in mirror descent, we defined the dynamics of the variables X,Z as follows{

Ż = −∇f(X)

X = ∇ψ∗(Z)
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where X ∈ X , and Z ∈ E∗ is, a priori, unconstrained. We now discuss how to obtain such an
operator ∇ψ∗, which maps E∗ into X . By the previous observation, we have for all z ∈ E∗,

∂ψ∗(z) = arg max
x∈E

〈z, x〉 − ψ(x).

And since domψ = X , we have that ∂ψ∗(z) ⊂ X . Thus we have a set-valued function ∂ψ∗(·)
which maps E∗ into X . For the mirror dynamics to be well-defined, we need ∂ψ∗(z) to be
single-valued for all z ∈ E∗, in other words, we need ψ∗ to be differentiable on all of E∗.
The following proposition gives a necessary and sufficient condition. First, we review some
definitions.

Definition 1. A convex function ψ is cofinite if its epigraph does not contain any non-
vertical half-line.

Definition 2. A convex function ψ is essentially strictly convex if it is strictly convex on all
convex subsets where it is subdifferentiable.

Definition 3. A convex function ψ is essentially smooth if it is differentiable on the interior
of its domain, and ‖∇ψ(x)‖ → ∞ as x tends to the boundary of the domain.

Proposition 1. Let ψ, ψ∗ be a pair of convex, closed function which are conjugates of each
other. Then ψ∗ is finite and differentiable on all of E∗ if and only if ψ is essentially strictly
convex and cofinite.

Proof. By Theorem 13.3 in [30], domψ∗ = E∗ if and only if ψ is cofinite. And by Theorem
25.3 in [30], ψ∗ is essentially smooth if and only if ψ is essentially strictly convex. But when
domψ∗ = E∗, essential smoothness and differentiability are equivalent. Therefore,

ψ∗ is finite and differentiable on E∗ ⇔ domψ∗ = E∗ and ψ∗ is essentially smooth

⇔ ψ is cofinite and ψ is essentially strictly convex.

Note that, in general, ψ may not be differentiable. In fact, differentiability of ψ is very
restrictive: By definition, ψ is differentiable at x if and only if there exists z such that
lim‖x′−x‖→0

ψ(x′)−ψ(x)−〈z,x′−x〉
‖x′−x‖ = 0; in particular, ψ can only be differentiable on the interior

of X since ψ needs to be finite in a neighborhood of x for the limit to be 0. Therefore, if X
has empty interior, ψ is nowhere differentiable.

Finally, note that we required ψ∗ to be differentiable on all of E∗ since in the general
case, the dynamics of the dual variable Ż = −∇f(X) can evolve anywhere in E∗. However,
for some problems, one may have a particular structure of ∇f which guarantees that Z
remains in a subset of E∗. For example, suppose that there exists a convex cone K such that
∇f(x) ∈ K for all x ∈ X . Then Z remains in −K, and it suffices that ψ∗ is differentiable on
−K, not necessarily all of E∗. We give an example in Section A.4.
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A.3 Bregman divergences and projections

Next, we define the Bregman divergences generated by the functions ψ and ψ∗. Suppose
that ψ∗ is differentiable on E∗. Then for (z, z′) ∈ E∗ × E∗, let

Dψ∗(z, z
′) = ψ∗(z)− ψ∗(z′)− 〈∇ψ∗(z′), z − z′〉 .

Assuming ψ is differentiable on X (this will be relaxed in Remark 2), we also define the dual
Bregman divergence

Dψ(x, x′) = ψ(x)− ψ(x′)− 〈∇ψ(x′), x− x′〉 .

Then we have the following identity that relates the dual Bregman divergences.

Proposition 2. Let z, z′ ∈ E∗, and let x = ∇ψ∗(z) and x′ = ∇ψ∗(z′). Then

Dψ∗(z, z
′) = Dψ(x′, x).

Proof. Using equivalence (A.1), we have

Dψ∗(z, z
′) = ψ∗(z)− ψ∗(z′)− 〈∇ψ∗(z′), z − z′〉

= [〈z, x〉 − ψ(x)]− [〈z′, x′〉 − ψ(x′)]− 〈x′, z − z′〉
= ψ(x′)− ψ(x)− 〈z, x′ − x〉
= Dψ(x′, x),

which proves the claim.

In the following examples, we will motivate a relaxation of the differentiability assumption
on ψ, and show that one can in fact define a Bregman divergence on X when ψ is not
differentiable but is a restriction of a differentiable function.

A.4 Examples

Entropy projection onto the positive orthant

Let X be the positive orthant X = Rd
+, and consider the negative (generalized) entropy

ψ(x) = −H(x) =
∑

i xi lnxi. Then ψ is differentiable on the interior of X , ∇ψ(x) =
(1 + ln xi)i, and a simple calculation shows that Dψ(x, x′) =

∑
i xi ln

xi
x′i
−∑i(xi − x′i), the

generalized I-divergence of x to x′.
Writing the definition of ψ∗, we have

ψ∗(z) = sup
x∈Rd+

〈z, x〉 −
∑
i

xi lnxi.
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The maximization can be solved explicitly by writing the Lagrangian of the problem: for
λ ∈ Rd

+, let L(x, λ) = 〈z, x〉 − ∑i xi lnxi +
∑

i λixi. Its gradient with respect to x is
z− (1 + lnxi)i+λ. Then by the KKT optimality conditions, x is optimal if and only if there
exist λ ∈ Rd

+ such that 
z − (1 + ln xi)i + λ = 0

x ≥ 0,

xiλi = 0 ∀i.
The first condition is equivalent to xi = ezi+λi−1, and since any solution of this form is strictly
positive, the complementary slackness condition requires that λ = 0, thus the solution is
simply

∇ψ∗(z) = x =
(
ezi−1

)
i

and ψ∗(z) = 〈z, x〉 − ψ(x) =
∑

i e
zi−1, defined and differentiable on all of E∗.

x1

x2

ψ(x) =
∑

i xi ln xi

z1

z2

ψ∗(z) =
∑

i e
zi−1

Figure A.1: Illustration of the generalized negative entropy function ψ(x) = −H(x), and its
conjugate ψ∗(z) =

∑
i e
zi−1.

Entropy projection onto the simplex

Let X be the probability simplex on Rn, i.e. X = ∆ = {x ∈ Rn
+ :
∑

i xi = 1}, and let ψ be
the negative entropy −H restricted to ∆. Formally, ψ(x) = −H(x) + δ∆(x), where δX (·) is
the indicator function of the convex set X , defined as follows: δX (x) = 0 if x ∈ X , and +∞
otherwise.

Remark 2. Strictly speaking, ψ is nowhere differentiable, since ∆ has empty interior in Rn.
In fact, the subdifferential of ψ at x ∈ ri ∆ is

∂ψ(x) = −∇H(x) + Ru,

where −∇H(x) is the gradient of H at x computed in the previous section, and u is a normal
vector to the affine hull of ∆ at x, i.e. u satisfies 〈u, y − x〉 = 0 for all y ∈ aff ∆. One such
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normal vector is the vector with all entries equal to 1. Next, we argue that in this case, if we
replace ∇ψ(x) by any vector in ∂ψ(x) in the definition of Dψ(y, x), the choice of subgradient
vector does not affect the value of Dψ(y, x). Formally, we write

Dψ(y, x) = ψ∗(y)− ψ∗(x)− 〈∂ψ(x), y − x〉 .

Indeed, we have for all z ∈ ∂ψ(x), z = ∇H(x) + αu for some α, and since u is normal to
∆, we have for all y ∈ ∆,

ψ(y)−ψ(x)−〈z, y − x〉 = ψ(y)−ψ(x)−〈∇H(x) + αu, y − x〉 = ψ∗(y)−ψ∗(x)−〈∇H(x), y − x〉 ,

and the definition is unambiguous. More generally, we have the following proposition.

Proposition 3. Suppose that ψ is the restriction of a differentiable function Ψ to a convex
set X of affine dimension m < n (the affine dimension of a convex set is the affine dimension
of its affine hull),

ψ(x) = Ψ(x) + δX (x).

Then for all x ∈ riX , the subdifferential of ψ is given by

∂ψ(x) =
{
∇Ψ(x) + Uα, α ∈ Rn−m}

where (ui)i∈{m+1,...,n} forms a basis for N , the subspace of normal vectors to the affine hull
of X , and U =

(
um+1 . . . un

)
. As a consequence, for all (x, x′) ∈ X × riX ,

Dψ(x′, x) = ψ(x′)− ψ(x)− 〈∂ψ(x), x′ − x〉

is defined unambiguously, and does not depend on the choice of subgradient z ∈ ∂ψ(x).
Furthermore, ∂ψ∗(z + Uα) = ∂ψ∗(z) for all z, and if ψ∗ is twice differentiable on E∗, then
for all x ∈ riX ,

∇2ψ∗(∂ψ(x))

is defined unambiguously, and does not depend on the choice of subgradient z ∈ ∂ψ(x).
Finally, for all z, z′ ∈ E∗, if x ∈ ∂ψ∗(z) and x′ ∈ ∂ψ∗(z′), then

Dψ∗(z, z
′) = Dψ(x′, x).

Proof. First, we have

∂ψ(x) = ∂Ψ(x) + ∂δX (x) = ∇Ψ(x) + ∂δX (x),

since Ψ is differentiable. The subdifferential of δX at x is the normal cone to X at x, and
since x ∈ riX , the normal cone coincides with the subspace N of vectors that are normal to
the affine hull of X , which proves the first part of the proposition.
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To prove that the Bregman divergence is defined unambiguously, let z ∈ ∂ψ(x). Then
∃α ∈ Rn−m such that z = ∇Ψ(x) +

∑n
i=m+1 αiui, and

ψ(x′)− ψ(x)− 〈z, x′ − x〉 = ψ(x′)− ψ(x)−
〈
∇ψ(x) +

∑
i

αiu, x
′ − x

〉
= ψ(x′)− ψ(x)− 〈∇ψ(x), x′ − x〉

which does not depend on the choice of z ∈ ∂ψ(x). Next, to show that ∂ψ∗(z+Uα) = ∂ψ∗(z),
we have

x ∈ ∂ψ∗(z)⇔ z ∈ ∂ψ(x)

⇔ z ∈ ∂ψ(x)− Uα ∀α ∈ Rn−m

⇔ z + Uα ∈ ∂ψ(x) ∀α ∈ Rn−m

⇔ x ∈ ∂ψ∗(z + Uα) ∀α ∈ Rn−m.

Furthermore, if ψ∗ is twice differentiable, since ∇ψ∗(z+Uα) = ∇ψ∗(z) for all α ∈ Rn−m, we
also have ∇2ψ∗(z + Uα) = ∇2ψ∗(z), and it follows that

∇2ψ∗(∂ψ(x)) = ∇2ψ∗(∇Ψ(x))

which does not depend on the choice of subgradient. Finally, the Bregman duality identity
follows from the proof of Proposition 2.

Given the previous convention, and writing ψ(x) = −H(x) + δ∆(x), we have −∇H(x) =
(1 + ln xi)i, and a simple calculation shows that Dψ(x, x′) =

∑
i xi ln

xi
x′i

is the Kullback

Leibler divergence between the distribution vectors x, x′. Similarly to the previous section,
we can write the definition of ψ∗,

ψ∗(z) = max
x∈∆
〈x, z〉 −

∑
i

xi lnxi,

and solve the maximization problem by writing the Lagrangian: for µ ∈ R and λ ∈ Rd
+, let

L(x, ν, µ) = 〈x, z〉 −∑i xi lnxi + ν(
∑

i xi − 1) +
∑

i λixi. Its gradient with respect to x is
z − (1 + ln xi)i − ν + λ. Then by the KKT optimality conditions, x is optimal if and only if
there exist λ ∈ Rd

+ and ν such that
z − (1 + ln xi)i − ν + λ = 0

x ≥ 0,
∑

i xi = 1

xiλi = 0 ∀i.

The first condition can be rewritten xi = ezi+λi/eν+1. Thus the third condition (comple-
mentary slackness), requires λi to be 0, and the expression of x simplifies to xi = ezi/eν+1.
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Finally, the primal feasibility condition
∑

i xi = 1 requires that
∑

i e
zi/eν+1 = 1. Therefore,

the unique solution of the maximization problem is

∇ψ∗(z)i = xi =
ezi∑
j e

zj
,

and simple algebra shows that ψ∗(z) = 〈z, x〉 − ψ(x) = ln
∑

i e
zi , defined on E∗ = Rn.

Note that we can verify the observation of Remark 2: if u is a normal vector to aff ∆, then
∇ψ∗(z) = ∇ψ∗(z + αu) for all u, so by duality of the subdifferentials, z ∈ ∂ψ(x) if and
only if z + αu ∈ ∂ψ(x) for all α. It also follows that ψ∗ is linear in the direction u, i.e.
ψ∗(x+ αu) = α + ψ∗(x).

x1

x2

ψ(x) =
∑

i xi ln xi + δ∆(x)

epiψ

z1

z2

ψ∗(z) = ln(
∑

i e
zi )

Figure A.2: Illustration of the negative entropy function restricted to the simplex ψ(x) =
−H(x) + δ∆(x), and its conjugate ψ∗(z) = ln(

∑
i e
zi). The function ψ is subdifferentiable

on the interior of ∆, but nowhere differentiable. The figure illustrates this fact by showing
two supporting hyperplanes at the same point. The conjugate function ψ∗ is linear in the
direction normal to the simplex (shown in dashed lines on the right).

Itakura-Saito divergence on the positive orthant

Let X be the positive orthant X = Rd
+, and let ψ(x) = −∑i lnxi. Then ∇ψ(x) =

(
− 1
xi

)
i
,

and a simple calculation shows that Dψ(x, x′) =
∑

i

(
xi
x′i
− ln xi

x′i
− 1
)

, the Itakura-Saito di-

vergence of x and x′.
Writing the expression of ψ∗, we have

ψ∗(z) = sup
x∈Rd+

〈z, x〉+
∑
i

lnxi,

it is finite on X ∗ = Rd
−. The maximization can be solved using the same approach as the

previous examples. Define the Lagrangian, for λ ∈ Rd
+, L(x, λ) = 〈z, x〉+∑i lnxi +

∑
i λixi.
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Its gradient with respect to x is z +
(

1
xi

)
i
+ λ, and x is optimal if and only if there exists

λ ∈ Rd
+ such that 

z +
(

1
xi

)
i
+ λ = 0

x ≥ 0

λixi = 0,

and the first condition can be rewritten as xi = 1
zi+λi

. Since any solution of this form is
non-zero, the complementary slackness condition requires that λ = 0, and the first condition
becomes xi = − 1

zi
. Therefore

∇ψ∗(z) =

(
− 1

zi

)
i

and simple calculation shows that ψ∗(z) = 〈z, x〉+
∑

i lnxi = −∑i[1 + ln(−zi)], defined on
X ∗ = Rd

−.

X X ∗ ψ∗(z) ψ(x) ∇ψ∗(z) ∇ψ(x) Dψ∗(x, x
′)

∆ Rn ln
∑

i e
zi

∑
i xi lnxi

(
ezi∑
j e
zj

)
i

(1 + lnxi)i
∑

i xi ln xi
x′i

Rn+ Rn
∑

i e
zi−1

∑
i xi lnxi

(
ezi−1

)
i

(1 + lnxi)i
∑

i xi ln xi
x′i
−∑i(xi − x′i)

Rn+ Rd− −∑i[1 + ln(−zi)] −
∑

i lnxi

(
− 1
zi

)
i

(
− 1
xi

)
i

∑
i

(
xi
x′i
− ln xi

x′i
− 1
)

Table A.1: Examples of dual distance generating functions and the corresponding Bregman
projections.
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Appendix B

Proof of Lemma 1

Let us rewrite the smoothed accelerated mirror descent ODE system
Ż = − t

r
∇f(X)

Ẋ = r
max(t,δ)

(∇ψ∗(Z)−X)

X(0) = x0, Z(0) = z0 with ∇ψ∗(z0) = x0.

By the Cauchy-Lipschitz theorem, there exists a unique solution (Xδ, Zδ) defined on [0, tmax),
and the solution is C1. Define, for t > 0,

Aδ(t) = sup
u∈[0,t]

‖Żδ(u)‖
u

Bδ(t) = sup
u∈[0,t]

‖Xδ(u)− x0‖
u

Cδ(t) = sup
u∈[0,t]

‖Ẋδ(u)‖

These quantities are finite for the following reasons:

• ‖Xδ(u)−x0‖
u

= ‖Ẋδ(0)‖+ o(1) near 0, thus Bδ is finite.

• ‖Ẋδ‖ is continuous thus bounded on [0, t], thus Cδ is finite.

• Finiteness of Aδ is a consequence of the following lemma.

To prove Lemma 1, we first need the auxiliary lemma below, that provides bounds on
Aδ, Bδ, Cδ.
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Lemma 3. For all t,

rAδ(t) ≤ ‖∇f(x0)‖+ Lf tBδ(t), (B.1)

Bδ(t) ≤
Lψ∗rt

6
Aδ(t), (B.2)

Cδ(t) ≤ r

(
tLψ∗

2
Aδ(t) +Bδ(t)

)
. (B.3)

Proof. By definition of Aδ and Bδ, we have

‖Zδ(t)− z0‖ ≤
∫ t

0

‖Żδ(v)‖dv ≤ Aδ(t)

∫ t

0

vdv =
t2

2
Aδ(t), (B.4)

‖Xδ(t)− x0‖ ≤ tBδ(t).

Now, from the first equation in (3.3), we have for all t ≤ t0

r

t
‖Żδ(t)‖ = ‖∇f(Xδ(t))‖

≤ ‖∇f(x0)‖+ ‖∇f(Xδ(t))−∇f(x0)‖
≤ ‖∇f(x0)‖+ Lf‖Xδ(t)− x0‖ ∇f is Lf -Lipschitz

≤ ‖∇f(x0)‖+ Lf tBδ(t).

Thus,
rAδ(t) ≤ ‖∇f(x0)‖+ Lf tBδ(t).

To prove inequality (B.2), we show that ‖Xδ(t)−x0‖ ≤ r
max(δ,t)

∫ t
0
‖∇ψ∗(Zδ(s))−∇ψ∗(z0)‖ds.

We consider the two cases t ≤ δ and t ≥ δ.

• Let t ≤ δ. From the second equation in (3.3), we have

e
rt
δ

(
Ẋδ +

r

δ
(Xδ − x0)

)
=
r

δ
e
rt
δ (∇ψ∗(Zδ)−∇ψ∗(z0)),

i.e.,
d

dt

(
(Xδ(t)− x0)e

rt
δ

)
=
r

δ
e
rt
δ (∇ψ∗(Zδ(t))−∇ψ∗(z0)),

thus integrating

(Xδ(t)− x0)e
rt
δ =

r

δ

∫ t

0

e
rs
δ (∇ψ∗(Zδ(s))−∇ψ∗(z0))ds

dividing by e
rt
δ and taking norms we obtain the desired inequality.
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• Let t ≥ δ. From the second equation in (3.3), we have

tr
(
Ẋδ +

r

t
(Xδ − x0)

)
= rtr−1(∇ψ∗(Zδ)−∇ψ∗(z0)),

i.e.
d

dt
(tr(Xδ(t)− x0)) = rtr−1(∇ψ∗(Zδ)−∇ψ∗(z0)),

thus integrating

tr(Xδ(t)− x0) =

∫ t

0

rsr−1(∇ψ∗(Zδ(s))−∇ψ∗(z0))ds

dividing by tr and taking norms, we obtain the desired inequality.

Now we have

‖Xδ(t)− x0‖ ≤
r

max(δ, t)

∫ t

0

‖∇ψ∗(Zδ(s))−∇ψ∗(z0)‖ds

≤ Lψ∗r

max(δ, t)

∫ t

0

‖Zδ(s)− z0‖ds ∇ψ∗ is Lψ∗-Lipschitz

≤ Lψ∗r

max(δ, t)

∫ t

0

s2

2
Aδ(t)ds by (B.4)

=
Lψ∗r

max(δ, t)
Aδ(t)

t3

6

≤ Lψ∗rt
2Aδ(t)

6
.

Dividing by t and taking the supremum, we have (B.2).
Finally, to bound Cδ, we have from the second equation in (3.3), for all t ≤ t0,

‖Ẋδ(t)‖ =
r

max(δ, t)
‖∇ψ∗(Zδ(t))−Xδ(t)‖

≤ r

max(δ, t)
(‖∇ψ∗(Zδ(t))−∇ψ∗(z0)‖+ ‖Xδ(t)− x0‖)

≤ r

max(δ, t)
(Lψ∗‖Zδ(t)− z0‖+ ‖Xδ(t)− x0‖)

≤ r

max(δ, t)

(
t2

2
Lψ∗Aδ(t) + tBδ(t)

)
≤ r

(
Lψ∗t

2
Aδ(t) +Bδ(t)

)
,

which conclude the proof.
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Proof of Lemma 1. First, we show that Aδ, Bδ, Cδ are bounded on [0, t0], uniformly in δ.
Combining (B.1) and (B.2), we have

rAδ(t) ≤ ‖∇f(x0)‖+ Lf tBδ(t) ≤ ‖∇f(x0)‖+ Lf t
Lψ∗rt

6
Aδ(t).

Thus Aδ(t)
(

1− Lψ∗Lf
6

t2
)
≤ ‖∇f(x0)‖

r
. And when t ≤ 2√

LfLψ∗
, 1− Lψ∗Lf

6
t2 ≥ 1

3
, thus

Aδ(t) ≤
3

r
‖∇f(x0)‖. (B.5)

Next, we have

Cδ(t) ≤ r

(
tLψ∗

2
Aδ(t) +Bδ(t)

)
by (B.3)

≤ r

(
tLψ∗

2
Aδ(t) +

Lψ∗rt

6
Aδ(t)

)
by (B.2)

≤ (3 + r)Lψ∗t

2
‖∇f(x0)‖ by (B.5)

To conclude, we have for all t ∈ [0, t0]

‖Żδ(t)‖ ≤ tAδ(t) ≤
3t

r
‖∇f(x0)‖,

‖Ẋδ(t)‖ ≤ Cδ(t) ≤
(3 + r)Lψ∗t

2
‖∇f(x0)‖,

which are bounded uniformly in δ on [0, t0], thus the family is equi-Lipschitz-continuous on
[0, t0]. It also follows that it is uniformly bounded on the same interval.
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Appendix C

Proof of Lemma 2

In our analysis, we will use the following lemmas.

Lemma 4. Let f be a convex function and suppose that ∇f is Lf -Lipschitz w.r.t. ‖ · ‖.
Then for all x, x′, x+,

f(x+) ≤ f(x′) + 〈∇f(x), x+ − x′〉+
Lf
2
‖x+ − x‖2

Proof. Since ∇f is Lf -Lipschitz, we have

f(x+) ≤ f(x) +
〈
∇f(x), x+ − x

〉
+
Lf
2
‖x+ − x‖2

and by convexity of f ,
f(x′) ≥ f(x) + 〈∇f(x), x′ − x〉

Summing the two inequalities, we obtain the result.

Lemma 5. For all u, v, w

Dψ∗(u, v)−Dψ∗(w, v) = −Dψ∗(w, u) + 〈∇ψ∗(u)−∇ψ∗(v), u− w〉

Proof. By definition of the Bregman divergence, we have

Dψ∗(u, v)−Dψ∗(w, v)

= ψ∗(u)− ψ∗(v)− 〈∇ψ∗(v), u− v〉 − (ψ∗(w)− ψ∗(v)− 〈∇ψ∗(v), w − v〉)
= ψ∗(u)− ψ∗(w)− 〈∇ψ∗(v), u− w〉
= − (ψ∗(w)− ψ∗(u)− 〈∇ψ∗(u), w − u〉) + 〈∇ψ∗(u)−∇ψ∗(v), u− w〉
= −Dψ∗(w, u) + 〈∇ψ∗(u)−∇ψ∗(v), u− w〉
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Lemma 6. For all u, v ∈ E∗,

1

2Lψ∗
‖ũ− ṽ‖2 ≤ Dψ∗(u, v) ≤ Lψ∗

2
‖u− v‖2

∗

where ũ = ∇ψ∗(u) and ṽ = ∇ψ∗(v).

Proof. We have

Dψ∗(u, v) = ψ∗(u)− ψ∗(v)− 〈∇ψ∗(v), u− v〉

=

∫ 1

0

∇〈ψ∗(v + t(u− v))−∇ψ∗(v), u− v〉 dt

≤ ‖u− v‖∗
∫ 1

0

‖ψ∗(v + t(u− v))−∇ψ∗(v)‖dt by the Cauchy-Schwartz inequality

≤ Lψ∗‖u− v‖∗
∫ 1

0

‖v + t(u− v)− v‖∗dt since ψ∗ is Lψ∗Lipschitz

= Lψ∗‖u− v‖2
∗

∫ 1

0

tdt

which proves the second inequality. The first inequality will be proved by dualizing this
inequality. Fix v ∈ E∗ and define

h(u) = Dψ∗(u, v) = ψ∗(u)− ψ∗(v)− 〈∇ψ∗(v), u− v〉 ,

d(u) =
Lψ∗

2
‖u− v‖2

∗.

Then by the previous inequality, h(u) ≤ d(u) for all u ∈ E∗, and taking duals, we have
h∗(u∗) ≥ d∗(u∗) for all u∗. We now derive the duals. Let ṽ = ψ∗(v). Then,

h∗(u∗) = sup
u
〈u∗, u〉 − h(u)

= sup
u
〈u∗, u〉 − ψ∗(u) + ψ∗(v) + 〈ṽ, u− v〉

= ψ∗(v)− 〈v, ṽ〉+ sup
u
〈u∗ + ṽ, u〉 − ψ∗(u)

= ψ∗(v)− 〈v, ṽ〉+ ψ(u∗ + ṽ),
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and

d∗(u∗) = sup
u
〈u∗, u〉 − d(u)

= sup
u
〈u∗, u〉 − Lψ∗

2
‖u− v‖2

∗

= sup
w
〈u∗, v + w〉 − Lψ∗

2
‖w‖2

∗

= 〈u∗, v〉+ sup
w
〈u∗, w〉 − Lψ∗

2
‖w‖2

∗

= 〈u∗, v〉+
1

2Lψ∗
‖u∗‖2,

where the last equality uses Cauchy-Schwartz. Therefore combining the two inequalities,

ψ∗(v)− 〈v, u∗ + ṽ〉+ ψ(u∗ + ṽ) ≥ 1

2Lψ∗
‖u∗‖2.

In particular, for all u ∈ E∗, if we call ũ = ∇ψ∗(u), and take u∗ = ũ− ṽ, then

ψ∗(v)− 〈v, ũ〉+ ψ(ũ) ≥ 1

2Lψ∗
‖ũ− ṽ‖2,

and by Theorem 23.5 in Rockafellar, ψ(ũ) = 〈u, ũ〉 − ψ∗(ũ), thus

ψ∗(v)− ψ∗(u)− 〈ũ, v − u〉 ≥ 1

2Lψ∗
‖ũ− ṽ‖2.

which proves the claim.

Proof of Lemma 2. We start by bounding the difference in Bregman divergences

Dψ∗(z
(k+1), z?)−Dψ∗(z

(k), z?)

= −Dψ∗(z
(k), z(k+1)) +

〈
∇ψ∗(z(k+1))−∇ψ∗(z?), z(k+1) − z(k)

〉
by Lemma 5,

≤ − 1

2Lψ∗
‖z̃(k+1) − z̃(k)‖2 +

〈
z̃(k+1) − x?,−ks

r
∇f(x(k))

〉
by Lemma 6. (C.1)

Now using the step from x(k) to x̃(k+1), we have

x̃(k+1) = arg min
x∈X

γs
〈
∇f(x(k)), x

〉
+R(x, x(k))

with `R
2
‖x− y‖2 ≤ R(x, y) ≤ LR

2
‖x− y‖2. Therefore, for any x, R(x, x(k)) ≥ R(x̃(k+1), x(k)) +

γs
〈
∇f(x(k)), x̃(k+1) − x

〉
. We can write

z̃(k+1) − z̃(k) =
1

λk

(
λkz̃

(k+1) + (1− λk)x̃(k) − x(k)
)

=
1

λk

(
d(k+1) − x(k)

)
,
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where we have defined d(k+1) in the obvious way. Thus

‖z̃(k+1) − z̃(k)‖2

=
1

λ2
k

‖d(k+1) − x(k)‖2

≥ 1

λ2
k

2

LR
R(d(k+1), x(k))

≥ 1

λ2
k

2

LR

(
R(x̃(k+1), x(k)) + γs

〈
∇f(x(k)), x̃(k+1) − d(k+1)

〉)
≥ 1

λ2
k

2

LR

(
`R
2
‖x̃(k+1) − x(k)‖2 + γs

〈
∇f(x(k)), x̃(k+1) − λkz̃(k+1) − (1− λk)x̃(k)

〉)
.

Thus

λk
kLR
2rγ
‖z̃(k+1) − z̃(k)‖2 ≥ k`R

2rλkγ
‖x̃(k+1) − x(k)‖2 +

〈
ks

r
∇f(x(k)),

1

λk
x̃(k+1) − z̃(k+1) − 1− λk

λk
x̃(k)

〉
.

(C.2)

Subtracting (C.2) from (C.1),

Dψ∗(z
(k+1), z?)−Dψ∗(z

(k), z?)

≤ −αk‖z̃(k+1) − z̃(k)‖2 − k`R
2rλkγ

‖x̃(k+1) − x(k)‖2

+

〈
−ks
r
∇f(x(k)),−x? +

1

λk
x̃(k+1) − 1− λk

λk
x̃(k)

〉
,

where

αk =
1

2Lψ∗
− kλkLR

2rγ
.

Defining D
(k+1)
1 = ‖x̃(k+1) − x(k)‖2 and D

(k+1)
2 = ‖z̃(k+1) − z̃(k)‖2, we can rewrite the last

inequality as

Dψ∗(z
(k+1), z?)−Dψ∗(z

(k), z?)

= −αkD(k+1)
2 − k`R

2rλkγ
D

(k+1)
1 +

sk

r

〈
−∇f(x(k)), x̃(k+1) − x?

〉
+

1− λk
λk

sk

r

〈
−∇f(x(k)), x̃(k+1) − x̃(k)

〉
By Lemma 4, we can bound the inner products as follows〈

x̃(k+1) − x̃(k),−∇f(x(k))
〉
≤ f(x̃(k))− f(x̃(k+1)) +

Lf
2
D

(k+1)
1 ,〈

x̃(k+1) − x?,−∇f(x(k))
〉
≤ f ∗ − f(x̃(k+1)) +

Lf
2
D

(k+1)
1 .
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Combining these inequalities, and using the fact that 1−λk
λk

= k
r
, we have

Dψ∗(z
(k+1), z?)−Dψ∗(z

(k), z?)

≤ −αkD(k+1)
2 +

k2s

r2

(
f(x̃(k))− f(x̃(k+1)) +

Lf
2
D

(k+1)
1

)
+
ks

r

(
f? − f(x̃(k+1)) +

Lf
2
D

(k+1)
1

)
− k`R

2rλkγ
D

(k+1)
1

=
k2s

r2

(
f(x̃(k))− f(x̃(k+1))

)
+
ks

r

(
f∗ − f(x̃(k+1))

)
− αkD(k+1)

2 − βkD(k+1)
1 ,

where

βk =
k`R

2rλkγ
− Lfk

2s

2r2
− Lfks

2r
.

Finally, we obtain a bound on the difference Ẽ(k+1) − Ẽ(k):

Ẽ(k+1) − Ẽ(k)

=
(k + 1)2s

r2
(f(x̃(k+1))− f ?)− k2s

r2
(f(x̃(k))− f ?) +Dψ∗(z

(k+1), z?)−Dψ∗(z
(k), z?)

=
k2s

r2
(f(x̃(k+1))− f(x̃(k))) +

(2k + 1)s

r2
(f(x̃(k+1))− f ?) +Dψ∗(z

(k+1), z?)−Dψ∗(z
(k), z?)

≤ (2k + 1− kr)s
r2

(f(x̃(k+1))− f ?)− αkD(k+1)
2 − βkD(k+1)

1

For the desired inequality to hold, it suffices that αk, βk ≥ 0, i.e.

1

2Lψ∗
− kLR

2(r + k)γ
≥ 0

k(r + k)`R
2r2γ

− Lfk
2s

2r2
− Lfks

2r
≥ 0,

i.e.

γ ≥ k

k + r
LRLψ∗

s ≤ `R
Lfγ

.

So it is sufficient that

γ ≥ LRLψ∗ s ≤ `R
Lfγ

which concludes the proof.
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