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Abstract—We consider a repeated routing game over a finite
horizon with partial control under selfish response, in which a
central authority can control a fraction of the flow and seeks
to improve a network-wide objective, while the remaining flow
applies an online learning algorithm. This finite horizon control
problem is inspired from the one-shot Stackelberg routing game.
Our setting is different in that we do not assume that the
selfish players play a Nash equilibrium; instead, we assume
that they apply an online learning algorithm. This results in an
optimal control problem under learning dynamics. We propose
different methods for approximately solving this problem: A
greedy algorithm and a mirror descent algorithm based on
the adjoint method. In particular, we derive the adjoint system
equations of the Hedge dynamics and show that they can be solved
efficiently. We compare the performance of these methods (in
terms of achieved cost and computational complexity) on parallel
networks, and on a model of the Los Angeles highway network.

I. INTRODUCTION

ROUTING games provide a game theoretic framework for
analyzing the route choices of non-cooperative agents

who share a network. They can be used to model transporta-
tion or communication networks. Due to the selfishness of
individual players (each seeks to minimize her own latency),
the resulting equilibrium is, in general, suboptimal from a
system-wide perspective. This inefficiency has been quantified
using the price of anarchy for example in [1], [2]. Different
approaches have been proposed to alleviate this inefficiency,
e.g. through congestion pricing [3], capacity allocation [4], or
control of a fraction of the flow [5]. The approach of control-
ling flow on the network is used in communication networks,
and is increasingly relevant for transportation networks due to
the abundance of routing software and GPS-enabled devices.

In the one-shot routing game, the partial control problem
(controlling a fraction of the flow while the remaining flow
responds selfishly), is known as Stackelberg routing, and was
proved to be NP-hard even in the simple case of parallel net-
works with linear latencies [5]. Stackelberg equilibria provide
a theoretical framework for understanding the inefficiencies
of a network and how much they can be alleviated, but they
do not capture route choice dynamics. In the repeated game,
we start by defining the dynamics of the selfish players, in
order to formulate a control problem on this dynamical system.
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We note that other approaches, for example [6], model and
control the dynamics of traffic, by using a macroscopic model
based on conservation laws, such as the cell transmission
model. Our approach is different in that we do not explicitly
model the flow dynamics (time scale of minutes or seconds).
Instead, we model route choice dynamics (time scale of days).
We will consider the Hedge dynamics in particular, perhaps
one of the most widely studied algorithms in the online
learning literature [8], also known as the multiplicative weight
updates [14] in computer science, the entropic descent in the
optimization literature [15], and log-linear learning in game
theory [20], [21]. Hedge dynamics are known to have vanish-
ing regret, which guarantees that the learning is asymptotically
consistent with the Nash equilibrium of the one-shot game,
in the following sense (see e.g. [7]): If players follow no-
regret dynamics, then asymptotically, their average strategies
converge to the set of Nash equilibria of the routing game (i.e.
the distance to the set converges to zero). The routing game
model and the online learning dynamics are described in detail
in Section II.

Given the selfish population dynamics, we formulate, in
Section III, a finite horizon optimal control problem: Find
the route allocation of the controlled players, given the non-
linear dynamics of the selfish players. The non-linear dynamics
make this problem non-convex, and an exact solution cannot be
computed efficiently in general. We propose several methods
to find an approximate solution to this problem in Sections IV
and V. The first method is a greedy solution which optimizes
one term of the objective function at a time. In the second
method, we use the adjoint method [12], [13] to perform a
local search using the gradient of the objective function under
the non-linear constraints. In particular, we derive the adjoint
system equations associated to the Hedge dynamics. We show
that the particular structure of our problem makes the adjoint
system efficient to solve.

In Section VI, we illustrate the qualitative behavior of these
methods on a simple example. We then study the performance
and the computational complexity on parallel networks of
increasing size. Finally, we perform a test on a model of the
Los Angeles highway network in Section VIII, and show the
improvement in the total travel time that could be achieved, for
various proportions of controlled traffic. In order to evaluate
the performance of these methods, we compare the achieved
cost to two bounds: An upper-bound given by the social
optimum, corresponding to full control (that is, the entire
population is controlled, which eliminates the selfish dynamics
and makes the problem convex), and a lower bound given
by the no-control cost (that is, when the entire population is
governed by the Hedge dynamics). Our results indicate that
the methods perform well in practice, and scale efficiently in
the size of the strategy space (number of routes).
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II. THE ONLINE SELFISH ROUTING MODEL

In this section, we review the standard routing game model,
which is used for example in [16], [2], and the no-regret
routing dynamics used for example in [7], [17], [18].

A. The one-shot routing game

We consider a directed graph G = (V,E), and K popula-
tions of players. Population k is described by a source node
sk ∈ V , a destination node tk ∈ V , and a total demand Fk,
which corresponds to the size of the population. Let Pk be
the set of simple paths that connect sk to tk. We denote P the
union P = ∪Kk=1Pk. We assume that different populations have
different source-destination pairs (sk, tk). As a consequence,
the path sets Pk are disjoint.

1) Path flows and edge loads: A path flow allocation for
population k is a vector fk ∈ RPk+ such that fkp is the flow
on path p ∈ Pk, and

∑
p∈Pk f

k
p = Fk. We can write fk as

a scaled distribution vector, fk = Fkµ
k, where µk ∈ ∆Pk =

{u ∈ RPk+ :
∑
p∈Pk ud = 1}, the probability simplex over Pk.

We will write

f = (f1, · · · , fK) ∈ F1∆P1 × · · · × FK∆PK ,

µ = (µ1, . . . , µK) ∈ ∆P1 × · · · ×∆PK .

The path flow allocation determines the edge loads: for all
e ∈ E, the load of edge e is φe =

∑K
k=1

∑
p∈Pk:e∈p f

k
p ,

which can be written in linear form: φe = (Mf)e, where
M ∈ RE×P+ is the incidence matrix of the graph: ∀e ∈ E, ∀k
and ∀p ∈ Pk, Me,p = 1 if e ∈ p and 0 otherwise. We can
also write φe = (M̃µ)e where M̃ ∈ RE×P+ is the weighted
incidence matrix: ∀e ∈ E, ∀k and ∀p ∈ Pk, M̃e,p = Fk if
e ∈ p and 0 otherwise.

2) Path loss: The load of an edge determines the cost
incurred by players utilizing that edge. This cost is called edge
latency, or edge loss, and is given by ce(φe), where ce is an
edge congestion function defined on R+.

Assumption 1: The edge congestion function ce is positive
increasing, continuously differentiable, and such that φe 7→
φece(φe) is convex.
The loss incurred on a path p ∈ Pk is the sum of edge latencies
along the path. We denote `kp this loss, so that

`kp(µ) :=
∑
e∈p

ce(φe) =
∑
e∈p

ce((M̃µ)e).

3) Nash equilibria of the routing game: Assuming rational-
ity of the players and perfect information, one can define the
Nash equilibria of the game:

Definition 1: A Nash equilibrium of the one-shot routing
game is a product distribution µ ∈ ∆P1×· · ·×∆PK such that
no player has an incentive to unilaterally change her path, i.e.

∀k, support(µk) = arg minp∈Pk `
k
p(µ).

We will denote N the set of Nash equilibria. One can show
that N is the set of solutions to a convex problem (see for

example [2]), given by

N = argmin
µ∈∆P1×···×∆PK

V (µ) :=
∑
e∈E

∫ φe=(M̃µ)e

0

ce(u)du,

where V is a convex function, usually called the Rosenthal
potential in reference to [19].

B. Online learning in the repeated routing game
We now assume that the game is played repeatedly in

time. Each population maintains a distribution µk
(t) ∈ ∆Pk ,

where t denotes the iteration number, and faces the following
sequential decision problem: At iteration t, the population
plays a distribution µk

(t), then the joint distribution µ(t)

determines the path losses `kp(µ(t)), which are then revealed
to population k. The population can update its distribution
µk

(t+1) given the history of losses. A natural measure of per-
formance for this sequential decision problem is the regret [8],
defined as follows: The regret Rk(t) of population k is the
difference between the expected loss incurred up to t, and the
loss of the best fixed strategy in hindsight. That is,

Rk
(t)

=
∑
τ≤t

〈
µk

(τ)
, `k(µ(τ))

〉
− min
µk∈∆Pk

〈
µk,
∑
τ≤t

`k(µ(τ))

〉
.

The regret is said to be sublinear if lim supt→∞
Rk

(t)

t ≤ 0.
If every population has sublinear regret, then the sequence

of Cesàro averages of their distributions, µ̄(t) :=
∑
τ≤t µ

(τ)

t ,
converges to N , see [7], [18], [17]. Here, convergence of
µ̄(t) to the set N means that limt→∞ d(µ̄(t),N ) = 0, where
d(·,N ) is for example the Euclidean distance to the set N .
Convergence of µ(t) is stronger than convergence of µ̄(t)

in general, but it can be guaranteed for a subclass of no-
regret algorithms, such as mirror descent algorithms [15]
and approximate replicator algorithms [18]. In particular, the
Hedge algorithm belongs to both of these families, and we will
use it as an example dynamics for the selfish population.

Algorithm 1 Online learning model of the selfish population

1: Given initial distribution µk
(0)

(e.g., uniform distribution)
2: for each iteration t do
3: Reveal losses `kp(µ(t)) to population k
4: Update distribution

µkp
(t+1)

=
µkp

(t)
e−ηt`

k
p(µ(t))∑

q∈Pk
µkq

(t)e−ηt`
k
q (µ(t))

(1)

The update equation for the Hedge algorithm is given by
equation (1), i.e. µkp

(t+1) ∝ µkp
(t)
e−ηt`

k
p(µ(t)), where (ηt) is

a sequence of positive learning rates such that ηt → 0 and∑
t ηt = ∞. In words, the probability of choosing a path

decreases, from iteration t to the next, proportionally to the
exponential of the loss on that path. The online learning model
and the Hedge algorithm are summarized in Algorithm 1.
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III. OPTIMAL ROUTING SUBJECT TO SELFISH LEARNING

Given the dynamics of the selfish populations, we can now
define the optimal routing problem. Suppose that a central
controller has the task of assigning a fraction of the total
flow, and seeks to minimize a network-wide objective function
over a finite horizon T . For every population k, let αk be
the fraction of the flow that is assigned by the controller.
We will denote uk

(t) the vector of path flows assigned by
the controller at time step t, so that uk(t) ∈ αkFk∆Pk . The
fraction of the population which is not controlled is assumed
to be selfish, and obeys the online learning model with
Hedge updates given in Algorithm 1, starting from a known
initial distribution xk

(0) and known learning rates (ηkt ) (the
learning rates can be estimated from the observed decisions
of the selfish populations, as discussed in [22]). We denote
xk

(t) ∈ (1−αk)Fk∆Pk the selfish flow distribution at time t.
Finally, we write u(t) = (u1(t)

, . . . , uK
(t)

), and use u(1:T )

to denote the control variables over the entire horizon, i.e.
u(1:T ) = (u(t))t∈{1,...,T}. Each vector belongs to a cartesian
product of scaled simplices, which we denote ∆u(α, F ) =
×Kk=1αkFk∆Pk . We use similar notation for the selfish flow
distributions x(t), and use ∆x(α, F ) = ×Kk=1(1−αk)Fk∆Pk .

Now consider an objective function J(x, u) of the form∑T
t=1 J

(t)(x(t), u(t)) with each J (t) convex, and that depends
on both the controlled and the selfish flows. The resulting
control problem is

minimize
T∑
t=1

J(t)(x(t), u(t)) (2)

subject to u(t) ∈ ∆u(α, F ), t ∈ {0, . . . , T}
x(0) = xinit

xkp
(t+1)

= (1− αk)Fk
xkp

(t)
e−ηt`

k
p(x(t)+u(t))∑

q∈Pk
xkq

(t)e−ηt`
k
q (x(t)+u(t))

(3)

This problem is non-convex in general, due to the equality
constraints (3) corresponding to the learning dynamics. We
propose several methods for efficiently finding approximate
solutions to this intractable problem.

In each of these methods, we will use the mirror descent
algorithm as a minimization method over the set ∆u(α, F ).
Mirror descent is a general method proposed by Nemirovski
and Yudin in [23] for solving constrained convex optimiza-
tion problems. It can be viewed, as observed in [15], as a
generalization of projected gradient descent, using a Bregman
projection instead of the Euclidean projection, which makes
it possible to adapt the projection to the geometry of the
feasible set. In particular, when the feasible set is a simplex
(or a product of simplices), taking the Bregman projection
to be an entropy projection yields an efficient, closed form
projection [15]. When minimizing a convex function over the
simplex in Rn, the entropic descent method reaches a precision
ε within O( logn√

ε
) iterations [15]. In the complexity analysis of

our methods, we will study the dependence on the dimension
n, and not on the precision ε. This will provide a good estimate
of how the computational cost of each method scales as a

function of the problem size (i.e. the number of paths), for a
given fixed precision. The mirror descent algorithm is briefly
reviewed in the Appendix.

Example 1 (Minimizing total delay): Although the
proposed methods apply to general cost functions, we
will focus, in our numerical examples, on minimizing total
delay on the network, given by

J (t)(x, u) =

K∑
k=1

∑
p∈Pk

(xkp + ukp)`kp(x+ u). (4)

Here each term (xkp +ukp)`kp(x+u) represents the total travel
time experienced by the fraction of the population that takes
path p.

IV. A GREEDY METHOD

A. Optimizing terms successively in the cost function
In this method, we minimize the objective function one term

at a time, given the state on the previous time steps. That is,
we minimize J (t)(x(t), u(t)) given the state and control vectors
(x(τ), u(τ))τ≤t−1. These completely determine x(t), given by
equation (3), and the subproblem becomes

min
u(t)∈∆u(α,F )

J (t)(x(t), u(t)). (5)

The controller anticipates the move of the selfish players and
myopically optimizes the objective on the next iteration. This
is a convex optimization problem, since J (t) is convex by
assumption. It can be solved using mirror descent. The greedy
solution can then be summarized as follows:

Algorithm 2 Greedy method

1: x(0) is given.
2: for each time step 0 ≤ t ≤ T do
3: u(t) = arg minu∈∆u(α,F ) J

(t)(x(t) + u)
4: Update x(t+1) according to equation (3)
5: return u = (u(t))1≤t≤T

B. Complexity analysis
The greedy method solves T convex optimization problems

on the product of simplices ∆u(α, F ), where each problem is
followed by an update of the selfish distribution. According to
the previous section, the number of iterations of mirror descent
on Pk grows as O(ln |Pk|), where each iteration requires
computing the gradient of the objective J (t), then updating the
distribution, which has a linear cost O(|Pk|). Thus the total
complexity of each problem is O(|Pk| log |Pk|), and the total
complexity of the greedy method is O(T

∑K
k=1 |Pk| log |Pk|).

V. THE ADJOINT METHOD

In this section, we propose to use the adjoint method to find
a local minimum of the non-convex problem (2). First, we can
reformulate problem (2) as follows:

minimize
u(t)∈∆u(α,F )

J(x, u)

subject to H(x, u) = 0
(6)
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where we used a function H defined on RT |P| × RT |P| with
values in RT |P| to encode the constraints on the selfish flow
distribution x, given by the initial distribution xinit and the
Hedge update equations (3).

The adjoint method is a general local search method for
solving optimal control problems under non-linear constraints,
of the form given in problem (6). It is derived using the
stationarity conditions of Pontryagin’s maximum principle. For
an introduction to the adjoint method in optimal control, see
for example [24], [25] and references therein. A complete
exposition of the adjoint method is beyond the scope of this
article, but we give below a formal derivation and intuitive
interpretation of the adjoint system equations.

Since the control u entirely determines the selfish flow
distributions x, let us assume (for illustration purposes) that
the state x can be written as x = X(u) for some differentiable
function X : ×Tt=1∆u(α, F ) → ×Tt=1∆x(α, F ). The optimal
control problem would then be equivalent to minimizing the
function J(X(u), u) over the feasible set ×Tt=0∆u(α, F ), and
we can use the mirror descent algorithm to solve this problem,
since the constraint set is a product of simplices. To apply
mirror descent, we need to compute, at each iteration, the
gradient of the function u 7→ J(X(u), u), which we denote
∇uJ(x, u). Using the chain rule, we have the following
expression of the gradient

∇uJ(x, u) =
∂J

∂x
(x, u)∇uX(u) +

∂J

∂u
(x, u), (7)

where the Jacobian term ∇uX(u), which represents the de-
pendence of the state x on the input u, can be expensive to
compute. The adjoint method provides a different approach
to computing the gradient (7) without explicitly computing
the state Jacobian: Since H(X(u), u) = 0, we have, taking
derivatives,

∂H

∂x
(x, u)∇uX(u) +

∂H

∂u
(x, u) = 0. (8)

Therefore if we let λ be a solution to the system[
∂H

∂x
(x, u)

]T
λ = −

[
∂J

∂x
(x, u)

]T
, (9)

we have

λT
∂H

∂u
(x, u) = −λT ∂H

∂x
(x, u)∇uX(u)

=
∂J

∂x
(x, u)∇uX(u),

where we used (8) in the first equality and (9) in the second.
Plugging this expression in (7), we obtain the following
expression of the gradient

∇uJ(x, u) = λT
∂H

∂u
(x, u) +

∂J

∂u
(x, u). (10)

Our method iteratively solves the adjoint equations (9) to
compute the gradient (10), and performs one mirror descent
step in the direction of this gradient. This summarized in
Algorithm 3, where we use the superscript [i] to denote step i
in the algorithm, not to be confused with superscript (t), which

Algorithm 3 Mirror descent using the adjoint method
1: Initialize i = 0, u[0] ∈ ×Tt=1∆u(α, F ), and x[0] by solving
H(x[0], u[0]) = 0.

2: while stopping criterion not satisfied do
3: Solve the adjoint system[

∂H

∂x
(x[i], u[i])

]T
λ[i] = −

[
∂J

∂x[i]
(x[i], u[i])

]T
Compute the gradient

g[i] = ∇uJ(x[i], u(i)) = λ[i]T ∂H

∂u
(x[i], u[i])+

∂J

∂u
(x[i], u[i]).

4: Perform one mirror descent step: for each k and each p ∈ Pk,

ukp
[i+1] ∝ ukp

[i]
exp(−βigkp

[i]
).

5: Update x[i+1] by solving H(x[i+1], u[i+1]) = 0.
6: Update i← i+ 1
7: return Control solution u[ibest].

denotes time t (corresponding to one term of the objective
function).

We run the method from multiple random initial points u(0)

and keep the best local minimum.

A. Derivation of the adjoint system equations for the Hedge
dynamics

In this section, we explicitly derive, for the Hedge learning
dynamics, the adjoint system equations (9). This derivation
is of general interest since it applies to any optimal control
problem that is subject to the Hedge dynamics, not only to
our optimal routing problem. Under Hedge dynamics, the
constraints H can be written as follows: ∀k and ∀p ∈ Pk,

Hk
p

(0)
(x, u) = xkp

(0) − xkp
(init)

,

and for t ≥ 1,

Hk
p

(t)
(x, u) = xkp

(t)−

(1− αk)Fk
xkp

(t−1)
e−ηt−1`

k
p(x(t−1)+u(t−1))∑

q∈Pk x
k
q

(t−1)
e−ηt−1`kq (x(t−1)+u(t−1))

. (13)

To simplify the derivation, let

`′(t−1)
p,q =

∂`p(x
(t−1) + u(t−1))

∂x
(t−1)
q

=
∂`p(x

(t−1) + u(t−1))

∂u
(t−1)
q

=
∑
e∈E

M̃e,pM̃e,qc
′
e

(
[M̃(x(t−1) + u(t−1))]e

)
,

wkp
(t−1)

= exp(−ηt−1`
k
p(x(t−1) + u(t−1))),

W k(t−1)
=
∑
q∈Pk

xkq
(t−1)

exp(−ηt−1`q(x
(t−1) + u(t−1))).

First, let us calculate
∂Hkp

(t)

∂xk′q
(s) (x, u). Since H(t) only depends

on x(t), x(t−1) and u(t−1), we have
∂Hkp

(t)

∂xkq
(s) (x, u) = 0 except
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∂Hk
p

(t)

∂xk′q
(t−1)

= −(1− αk)Fkw
k
p

(t−1)

[
xkp

(t−1)
ηt−1

 `
′(t−1)
p,q

Wk(t−1)
−
∑
r∈Pk x

k
r

(t−1)
wkr

(t−1)
`
′(t−1)
r,q

(Wk(t−1))2

+ δk
′
k x

k
p

(t−1) wk
′
q

(t−1)

(Wk(t−1))2
− δp,q

1

Wk(t−1)

]
(11)

∂Hk
p

(t)

∂ukq
(t−1)

= −(1− αk)Fkw
k
p

(t−1)
xkp

(t−1)
ηt−1

 `
′(t−1)
p,q

Wk(t−1)
−
∑
r∈Pk x

k
r

(t−1)
wkr

(t−1)
`
′(t−1)
r,q

(Wk(t−1))2

 (12)

for s ∈ {t−1, t}. Then we have
∂Hkp

(t)

∂xk′q
(t) = δk

′

k δ
q
p, where we use

the Kronecker notation δk
′

k = 1 if k = k′ and 0 otherwise. The

expression for
∂Hkp

(t)

∂xk′q
(t−1) is given in equation (11) at the top of

the page. Similarly,
∂Hkp

(t)

∂uk′q
(s) is zero except when s = t−1, and

the expression for
∂Hkp

(t)

∂ukq
(t−1) is given in equation (12).

B. Complexity analysis
The method performs a mirror descent on the product of

simplices ×Tt=1∆u(α, F ), and the number of iterations on each
simplex Pk grows as O(log |Pk|), as in the greedy method.
However, now each gradient evaluation requires solving the
adjoint system (9) then using the expression (10) of the
full gradient. One gradient evaluation thus requires calculat-
ing the partial derivatives ∂J

∂u (x, u), ∂J∂x (x, u) ∈ RT |P|, and
∂H
∂x (x, u), ∂H∂u (x, u) ∈ RT |P|×T |P|, then solving the adjoint
system (9) for λ ∈ RT |P|. If we further assume that the
cost function J (t) at time-step t only depends on x(t) and
u(t), then the matrix ∂H

∂x (x, u) is banded lower-triangular,
and contains O(T |P|2) non-zero terms. Therefore solving
the adjoint system can be done in O(T |P|2) using Gaussian
elimination, as discussed for example in [26] Appendix C-2.
Therefore, the total computational complexity of the adjoint
method scales as O

(
T |P|2

∑K
k=1 ln |Pk|

)
. It is linear in T ,

similarly to the greedy method, but scales quadratically (up to
logarithmic factors) in the total number of paths |P|.

VI. PERFORMANCE ON A SIMPLE EXAMPLE

s t

ce(φe) = 1

F = 1

ce(φe) = 2φe

Fig. 1: Pigou network used for the numerical experiment.

To illustrate the qualitative difference between the greedy
and the adjoint solutions, we consider a simple example known
as the Pigou network, given in Figure 1.

It is given by a single population of players with total mass
F1 = 1, and with two paths connecting the origin to the
destination, each consisting of a single edge. The congestion

function on the top edge is constant, c1(φ1) = 1, and the con-
gestion function on the second edge is linear, c2(φ2) = 2φ2.
This routing game has a unique Nash equilibrium, given by
xNash = ( 1

2 ,
1
2 ) (under this equilibrium, both edges have the

same loss). The total delay of the network (as defined in
Example 1) is x1 + 2x2

2 = x1 + 2(1− x1)2, which is minimal
at x(social) = ( 1

4 ,
3
4 ).

u(t)

x(t)

`(t)

t

1

(a) Greedy solution.

u(t)

x(t)

`(t)

t

1

(b) Adjoint solution.

Fig. 2: Control solution on the Pigou network. Controlled mass u(t)

(top), selfish mass x(t) (middle) and corresponding path losses `(t)

(bottom). The green lines correspond to the top path, and the blue
lines to the bottom path. The dashed lines show the social optimum
xsocial = ( 1

4
, 3

4
).

The particularity of this example is that whenever α ≤ 1
2 ,

no Stackelberg strategy can improve the total cost, since any
allocation of the controlled flow will induce the same total
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Fig. 3: Social cost J(t) over time induced by adjoint solution and the
greedy solution. The dashed line shows the social optimal allocation.

flow distribution, equal to ( 1
2 ,

1
2 ). So for the one-shot game,

the equilibrium of the system cannot be improved. However,
one may take advantage of the selfish learning dynamics to
reduce the cost on a finite horizon.

Consider the total delay on the network, J (t)(x, u) =∑
p∈P1

(x1
p + u1

p)`
1
p(x

1
p + u1

p), and fix α = 1
2 . We assume

that the selfish population obeys the Hedge dynamics, starting
from the uniform distribution x(0). Without control, the selfish
flow distribution is stationary, x(t) = ( 1

2 ,
1
2 ) for all t (note

that this corresponds to the Nash equilibrium). We simulate
the greedy method and the adjoint method with T = 300,
α = 1

2 , and learning rates ηt = 1√
t
. The greedy and the

adjoint solutions are illustrated in Figure 2 and 3, and are
quite different qualitatively: The greedy solution assigns all the
controlled flow to the upper path at all times, u(t)

greedy = ( 1
2 , 0)

for all t ∈ {1, . . . , T}, since this is the best myopic decision
at any time. The adjoint solution, however, first allocates flow
to the lower path, which decrease the selfish flow on that path.
Then, the controlled flow is moved to the upper path, which
results in decreasing the cost on the lower path. This strategy

achieves a better social cost (Jgreedy = 291.7; J adjoint = 283;
the no-control cost (α = 0) is J selfish = 300; and the social
optimal cost (α = 1) is J∗ = 262.5). The per-time-step costs
J (t) for both solutions are given in Figure 3, where we can
observe that the adjoint solution sacrifices the cost on the first
few time-steps for a lower cost on later time steps. In particular,
this example illustrates the limitations of the greedy approach,
since, by definition, it does not anticipate the dynamics of the
selfish population over several time steps.

VII. NUMERICAL EXPERIMENTS ON SYNTHETIC DATA

In this section, we compare the performance and running
time of each method on parallel networks of increasing-
size. Parallel networks can be used to model job scheduling
problems (for example in [5]). This simple topology also
allows us to evaluate how each method scales, and provides
some insights on the qualitative behavior of the solution.

A. Experimental setting
We consider parallel networks with |P| paths. We fix the

following parameters of the models: time horizon T = 20,
total flow F = 0.5, control fraction α = 0.1, learning rates
of the selfish players ηt = 1√

t
. We run the different methods

on networks of increasing size, |P| ∈ {2, 5, 10, 20, 40, 60}.
For a given network size |P|, we run N = 100 instances of
the simluation, each time with a different set of congestion
functions {ce}e∈P , and output the quantities given in Table I
below. The congestion functions are taken to be linear, of the
form ce(φe) = aeφe+be, where ae and be are drawn randomly
in [0, 1]. The social cost function J is taken to be the total delay
function (4).

J selfish Value of the objective under selfish flows (α = 0).
J∗ Value of the objective under optimal flows (α = 1).
Jm[i] Value of the objective function at the ith iteration of method m.

Pm[i] Normalized objective value, J
m[i]−J∗

Jselfish−J∗
.

τm[i] The running time of the ith iteration of method m.

TABLE I: Output of one simulation.

We then report the average value of the scaled objective
on Fig. 4, and the average running time in Fig. 5. We scale the
objective value by J selfish − J∗, so that the values on different
network instances are comparable.

For the greedy method (Section IV), each iteration i cor-
responds to the minimization of one term of the objective
function: Recall that the objective can be decomposed into
J(x, u) =

∑T
t=1 J

(t)(x(t), u(t)), and that the greedy algorithm
minimizes one term of the objective at a time. Thus at
iteration i, the greedy algorithm computes a partial greedy
solution (u(1), . . . , u(i)) (in particular, (u(i+1), . . . , u(T )) are
not computed yet). In order to report the value of the objective
at step i, we simply evaluate the objective on the vector
(u(1), . . . , u(i), u0, . . . , u0), where u0 ∈ [∆u(α, F )] is the
uniform distribution. For the adjoint method, each iteration i
corresponds to one step of mirror descent on [∆u(α, F )]T .
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(c) |P| = 60

Fig. 4: Average performance of each method on a random instances of a parallel networks of size |P|.

B. Results
We can see on Fig. 4 that, except in the special case of 2-path

networks, a control of α = .1 of the total flow allows a ∼ 25%
reduction in the social cost, compared to the selfish dynamics.
The greedy and adjoint methods achieve a comparable value of
the objective function. The adjoint method with backtracking
line search achieves the best performance, and requires fewer
iterations to converge.
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(b) Adjoint

Fig. 5: Average time of one iteration as a function of the size |P|
of the network and corresponding polynomial fit. The results confirm
our complexity analysis: the greedy method scales linearly in |P|,
and the adjoint method scales quadratically.

VIII. NUMERICAL EXPERIMENT ON THE LOS ANGELES
HIGHWAY NETWORK

A. Los Angeles highway network
In this section, we consider a model of the Los Angeles

highway road network, used in [28], and illustrated in Fig. 61.
The network topology is obtained from OpenStreetMap data,
by keeping highways that contain five lanes or more. We
consider K = 42 source-destination pairs (illustrated in
Fig. 6b), for the following destinations: Hollywood (node 5),

1The model and the data used to generate it are taken from Thai
et al. [28]. The code is available at https://github.com/jeromethai/traffic-
estimation-wardrop

Santa Monica (node 20) and Central L.A. (node 22). In order to
limit the problem size, we also restrict the set of paths available
to each souce-destination pair, by removing any path that is
empty under both social optimum and Nash equilibrium.

The congestion functions are those estimated by the Bureau
of Public Roads for a network in quasi-static equilibrium [28].
More precisely, the congestion function is assumed to be of the
form ce(φe) = deD(φe/me), where D(x) = 1+0.15x4, φe is
the edge flow, de a free-flow delay, and me is the capacity on
edge e. The simulations are run with a time horizon T = 20,
learning rates ηt = 1√

t
, with values of α ∈ {.1, .3, .5, .7, .9, 1}.

The results are given in Fig. 7 and 8, and discussed bellow.

B. Effect of increasing control
First, we observe that increasing the control parameter α

results in a decrease in the total delay, and for higher values
of α, the value of the objective is very close to that of the
social optimum. Although intuitive, this cannot be guaranteed
in general, since the problem is non-convex for all α strictly
between 0 and 1, so the problem may converge to a worse
local minimum for a lower value of α.

C. Numerical Results for α = 0.1

We now have a more detailed look at the performance of
each method with a fixed α = 0.1. The values of the objective
function for each method are reported in the following table,
and the average delay per vehicle per day is reported as a
function of iteration number in Fig. 8.

J social Jgreedy Jadjoint Jadjoint ls J selfish

25.4 29.0 28.7 32.0 36.7

We observe that most of the methods do not guarantee a
decrease in the value of the objective from one iteration to
the next, except the adjoint method with line search, which,
by definition, searches for a step size which guarantees a
descent (by Armijo’s rule). Nevertheless, the adjoint method
without line search performs best, and converges to a local
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(a) L.A. highway network and its graph model. (b) Selected sources (blue) and destinations (red) for the Los Angeles highway network

Fig. 6: Los Angeles highway network.
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(c) Adjoint method with backtracking line search

Fig. 7: Results for the different methods, with increasing α. The red solid and dotted lines represent, respectively, the social optimum (α = 1)
and the selfish response (α = 0).

minimum with lower objective value than that with line search.
This may be a result of line search being too conservative:
Requiring the Armijo rule to be satisfied at each iteration
may prevent the method from exploring the search space. The
greedy method performs surprisingly well, and is within 3% of
the (normalized) objective value of the adjoint method. Finally,
it is worth observing that even when controlling a fraction of
the population as small as α = 0.1, the improvement in the
social cost function can be significant (70% reduction in the
distance to social optimum).

IX. CONCLUSION

We studied a problem of repeated routing under selfish
response, in which the selfish players follow online learning
dynamics given by the Hedge algorithm. Such dynamics offer
a realistic model of behavior, and are asymptotically consistent
with Nash equilibria. Subject to these dynamics, the prob-
lem of optimal routing is non-convex, and cannot be solved

exactly in general. We proposed two methods to approach
this non-convex problem, and analyzed their computational
complexity and their performance on numerical examples: A
greedy method and a local search method based on the adjoint
system. In particular, we derived the adjoint system equations
associated to the Hedge dynamics.

Our numerical experiments shed light on the tradeoffs and
the empirical performance of each method: The adjoint method
has the best performance, but its complexity is quadratic. The
greedy method, while limited due to its myopic nature, is
simple to implement and performs well empirically.

While our application was specific to the routing game,
the derivation of the Hedge adjoint equations is generic and
can be applied to any optimal control problem where a
selfish population is assumed to follow Hedge dynamics. Our
experiments indicate that the adjoint method works well in
practice, and encourages further investigation into the numer-
ical performance on other applications.
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APPENDIX A
THE MIRROR DESCENT ALGORITHM

Consider the problem of minimizing a convex function f on a convex
feasible set X . The mirror descent algorithm minimizes, at each iteration,
a local approximation of the function f , as detailed in Algorithm 4, where
βi is a predefined sequence of decreasing step sizes. We can also use a line
search method for choosing the step sizes, as discussed in Appendix B. The
mirror descent method is guaranteed to converge to the set of minimizers
arg minµ∈X f(µ) for example when βi decreases to 0 and

∑∞
i=1 βi =∞,

see for example [15].

Algorithm 4 Mirror descent algorithm
for t ∈ N do

Compute a subgradient `[i] ∈ ∂f(µ[i])

µ[i+1] = arg min
µ∈X

[〈
`[i], µ− µ[i]

〉
+

1

βi
Dψ(µ, µ[i])

]
(14)

Here, Dψ is the Bregman divergence induced by a strongly convex function
ψ, and given by Dψ(µ, ν) = ψ(µ) − ψ(ν) − 〈∇ψ(ν), µ− ν〉. The choice
of the Bregman divergence can be adapted to the geometry of the feasible
set X . In particular, if X is a simplex, X = ∆n, and we choose ψ to be
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the negative entropy, ψ(µ) = H(µ) :=
∑
i µi lnµi, then the corresponding

Bregman divergence is the KL divergence, DKL(µ, ν) :=
∑
i µi ln µi

νi
, and

the solution of the mirror descent update in Algorithm 4 is exactly the Hedge
update given in equation (1), see [15]. Furthermore, when X is a cartesian
product of simplices, X = ∆P1 ×· · ·×∆PK , then we can take ψ to be the
sum of negative entropies, ψ(µ) =

∑K
k=1H(µk), in which case the Bregman

divergence is the sum of KL divergences, Dψ(µ, ν) =
∑K
k=1 DKL(µk, νk),

and the minimization problem (14) decomposes into K minimization prob-
lems, each on a simplex Pk .

APPENDIX B
LINE SEARCH IN MIRROR DESCENT

In the standard implementation of Hedge, we run the algorithm with
a predefined sequence of step sizes, which results in a relatively slow
convergence to the desired precision. Line search is a method for adaptively
choosing the step size βi at each iteration. We implement the backtracking
line search method, commonly used in projected gradient descent and analyzed
for example in Chapter 9 in [26]. We adapt this method to Hedge. This is
summarized in Algorithm 5.

Algorithm 5 Backtracking line search for Hedge with Armijo coefficient
a ∈ (0, 1

2
), backtracking rate b ∈ (0, 1)

1: Input: previous iterate u[i], x[i] and previous gradient vector g[i] =
∇uJ(x[i], u[i]).

2: Initialize βi = βinit
i

3: while
J(x[i+1], u[i+1]) ≥ J(x[i], u[i]) + a

〈
g[i], u[i+1] − u[i]

〉
do

4: Solve for u[i+1]

ukp
[i+1] ∝ ukp

[i]
exp(−βigkp

[i]
)

5: Update x[i+1] by solving H(x[i+1], u[i+1]) = 0
6: Update βi+1 ← bβi

The Armijo condition in step 4 above can be justified by writing the first
order Taylor approximation of J around the previous iterate: J(X(u), u) =
J(x[i], u[i]) +

〈
g[i], u− u[i]

〉
+O(‖u− u[i]‖2), and evaluated at u[i+1],

J(x[i+1], u[i+1]) ≤ J(x[i], u[i])+〈
g[i], u[i+1] − u[i]

〉
+ C‖u[i+1] − u[i]‖2, (15)

for some positive constant C. Now since u[i+1] is, by definition of the Hedge
update, the minimizer of

〈
g[i], u− u[i]

〉
+ 1
βi+1

Dψ(u, u[i]), we have〈
g[i], u[i+1] − u[i]

〉
+

1

βi+1
DKL(u[i+1], u[i])

≤
〈
g[i], u[i] − u[i]

〉
+

1

βi+1
DKL(u[i], u[i]) = 0.

Thus
〈
g[i], u[i+1] − u[i]

〉
is negative, and

Dψ(u[i+1], u[i]) ≤ −βi+1

〈
g[i], u[i+1] − u[i]

〉
≤ βi+1‖g[i]‖∞‖u[i+1] − u[i]‖1.

Finally, by Pinsker’s inequality, we have DKL(u[i+1], u[i]) ≥ 1
2
‖u[i+1] −

u[i]‖21, and it follows that 1
2
‖u[i+1] − u[i]‖21 ≤ βi+1‖g[i]‖∞‖u[i+1] −

u[i]‖1. Simplifying, we have

‖u[i+1] − u[i]‖1 ≤ 2βi+1‖g[i]‖∞,

which proves that as βi+1 → 0, ‖u[i+1] − u[i]‖ → 0, and the Taylor
bound (15) is eventually dominated by the Armijo bound

J(x[i], u[i]) +
〈
g[i], u[i+1] − u[i]

〉
+ C‖u[i+1] − u[i]‖2

< J(x[i], u[i]) + a
〈
g[i], u[i+1] − u[i]

〉
,

for ‖u[i+1] − u[i]‖ small enough, which justifies using the Armijo rule for
Hedge.
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