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Abstract—This article presents a game theoretic framework for
studying Stackelberg routing games on parallel networks with
horizontal queues, such as transportation networks. First, we
introduce a new class of latency functions that models congestion
due to the formation of physical queues. For this new class, some
results from the classical congestion games literature (in which
latency is assumed to be a non-decreasing function of the flow)
do not hold. In particular, we find that there may exist multiple
Nash equilibria that have different total costs. We provide a
simple polynomial-time algorithm for computing the best Nash
equilibrium, i.e. the one which achieves minimal total cost.

Then we study the Stackelberg routing game: assuming a
central authority has control over a fraction of the flow on
the network (compliant flow), and that the remaining flow (non-
compliant) responds selfishly, what is the best way to route the
compliant flow in order to minimize the total cost? We propose
a simple Stackelberg strategy, the Non-Compliant First (NCF)
strategy, that can be computed in polynomial time. We show that
it is optimal for this new class of latency on parallel networks.
This work is applied to modeling and simulating congestion
relief on transportation networks, in which a coordinator (traffic
management agency) can choose to route a fraction of compliant
drivers, while the rest of the drivers choose their routes selfishly.

I. INTRODUCTION AND MAIN RESULTS

A. Motivation and related work

Routing games model the interaction between players on a
network, where the cost for each player on an edge depends
on the total congestion of that edge. Extensive work has been
dedicated to the study of Nash equilibria (or user optimal
assignments) for routing games, in which players selfishly
choose the routes that minimize their individual costs (laten-
cies) [4], [8], [7]. In general, Nash equilibria are inefficient
compared to a system optimal assignment that minimizes the
total cost on the network [16]. This inefficiency has been char-
acterized for different classes of latency functions and network
topologies [27], [29]. This helps understand the inefficiencies
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caused by congestion on numerous real-life networks, such as
communication networks and traffic networks.

In order to reduce the inefficiencies due to selfish routing,
many instruments have been studied, including congestion
pricing [21], capacity allocation [15] and Stackelberg rout-
ing [25], [2], [29], [14]. In the Stackelberg routing game,
a subset of the players, corresponding to a fraction of the
total flow, hereafter called the compliant flow, is centrally
assigned by a coordinator (leader), then the remaining players
(followers) choose their routes selfishly. The objective of
the leader is to assign the compliant flow in a manner that
minimizes a system-wide cost function, while anticipating
the followers’ selfish response. This setting is relevant in the
planning and operation of transportation and communication
networks.. In transportation networks, advances in traveler
information systems have made it possible to interact with
individual drivers and exchange information through GPS-
enabled smartphone applications or vehicular navigation sys-
tems [31]. These devices can be used by a a traffic control
center to provide routing advice that can improve the overall
efficiency of the network. Naturally, the question arises on
how the traffic control center should coordinate with the
compliant drivers while accounting for the selfish response of
other drivers; hence the importance of the Stackelberg routing
framework. One might argue that the drivers who are offered
routing advice are not guaranteed to follow the suggested
routes, especially when these routes do not have minimal
latency (in order to improve the system-wide efficiency, some
drivers will be assigned routes that are sub-optimal in the Nash
sense). However, in some cases, it can be reasonably assumed
that a fraction of the drivers will choose the routes suggested
by the coordinator, despite immediate fairness concerns. For
example, some drivers may have sufficient external incentives
to be compliant with the coordinator. In addition, the compliant
flow may also include altruistic drivers who care about the
system-wide efficiency (e.g. pollution levels).

Stackelberg routing on parallel networks has been studied
extensively for the class of non-decreasing latency functions,
and it is known that computing the optimal Stackelberg
strategy is NP-hard in the size of the network [25]. This
led to the design of polynomial time approximate strategies
such as Scale and Largest Latency First [25], [29]. While
this class of latency functions provides a good model of
congestion for a broad range of networks with vertical queues,
such as communication networks, it does not entirely cap-
ture congestion in networks with horizontal queues, such
as transportation networks, in which queuing results in an
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increase in density [17], [9], [31], [19], [24], which in turn
affects the latency. In order to better model the effects of
density, we introduce a new class of latency functions, and we
study Stackelberg routing games for this new class on parallel
networks. User-equilibria for routing games with horizontal
queues have been studied for example in [12], [20], [30], [5].
However, to the best of our knowledge, Stackelberg routing
with horizontal queues has not been addressed so far.

We restrict our present study to parallel networks. This
simple network topology is of practical importance in sev-
eral situations, including traffic planning on parallel highway
networks that connect two highly populated areas [6]. Figure 1
shows one such network that connects San Francisco to San
Jose. We will consider this network in Section V.

Figure 1: Map of a parallel highway network connecting San
Francisco to San Jose.

B. Congestion on horizontal queues

The classical model for vertical queues assumes that the
latency `n(xn) on a link n is a non-decreasing function of
the flow xn on that link [26], [29], [3], [4], [8]. However, for
networks with horizontal queues [17], [19], [24], the latency
not only depends on the flow, but also on the density. For
example, on a transportation network, the latency depends on
the density of cars on the road (e.g. in cars per meter), and
not only on the flow (e.g. in cars per second), since for a
fixed value of flow, a lower density means higher velocity,
hence lower latency. These effects of changing density are
not captured by models of vertical queues. In this section
we describe a simplified model of congestion that takes into
account both flow and density.

Let ρn be the density on link n, assumed to be uniform,
for simplicity, and let the flow xn be given by a continuous,
concave function of the density

xρn : [0, ρmax
n ]→ [0, xmax

n ]

ρn 7→ xn = xρn(ρn)

Here, xmax
n > 0 is the maximum flow or capacity of the link,

and ρmax
n is the maximum density that the link can hold. The

function xρn is determined by the physical properties of the
link. It is termed the flux function in conservation law theory
[11], [18] and the fundamental diagram in traffic flow theory
[9], [13], [23]. In general, it is a non-injective function. We
make the following assumptions:

• There exists a unique density ρcrit
n ∈ (0, ρmax

n ) such
that xρn(ρcrit

n ) = xmax
n , called critical density. When

ρn ∈ [0, ρcrit
n ], the link is said to be in free-flow, and when

ρn ∈ (ρcrit
n , ρmax

n ), it is said to be congested.
• In the congested regime, xρn is continuous decreas-

ing from (ρcrit
n , ρmax

n ) onto (0, xmax
n ). In particular,

limρn→ρmax
n

xρn(ρn) = 0 (the flow reduces to zero when
the density approaches the maximum density).

These are standard assumptions on the flux function, following
traffic flow theory [13], [23], [9]. Additionally, we assume
that in the free-flow regime, xρn is linearly increasing in ρn,
and since xρn(ρcrit

n ) = xmax
n , we have in the free-flow regime

xρn(ρn) = xmax
n ρn/ρ

crit
n (as a result, the flux function is

non-differentiable at the critical density). The assumption of
linearity in free-flow is the only restrictive assumption, and
it is essential in deriving the results on optimal Stackelberg
strategies. Although somewhat restrictive, this assumption is
common, and the resulting flux model is widely used in
modeling transportation networks, such as in [22], [9]. Figure 2
shows examples of such flux functions.

Since the density ρn and the flow xn are assumed to be
uniform on the link, the velocity vn is given by vn = xn/ρn
and the latency is simply given by Ln/vn = Lnρn/xn where
Ln is the length of link n. Thus to a given value of the flow,
there may correspond more than one value of the latency, since
the flux function is non-injective in general. To illustrate this
with an example, we consider a transportation setting. A given
value xn of flow of cars on a road-segment can correspond to
• either a large concentration of cars moving slowly (high

density, the road is congested), in which case the latency
is large,

• or few cars moving fast (low density, the road is in free-
flow), in which case the latency is small.

Therefore, the basic premise that the latency is a function of
the flow does not hold for networks with horizontal queues,
i.e. networks in which the density may change and impact the
latency.

C. Latency function for horizontal queues

Given a flux function xρn, the latency can be easily expressed
as a non-decreasing function of the density

`ρn : [0, ρmax
n ]→ R̄+

ρn 7→ `ρn(ρn) =
Lnρn
xρn(ρn)

(1)

From the assumptions on the flux function, we have:
• In the free-flow regime, the flux function is linearly

increasing, xn(ρn) =
xmax
n

ρcrit
n
ρn. Thus the latency is is

single-valued in free-flow, `ρn(ρn) =
Lnρ

crit
n

xmax
n

. We will

denote its value by an
∆
=

Lnρ
crit
n

xmax
n

, called henceforth the
free-flow latency.

• In the congested regime, xρn is bijective from (ρcrit
n , ρmax

n )
to (0, xmax

n ). Let

ρcong
n : (0, xmax

n )→ (ρcrit
n , ρmax

n )

xn 7→ ρcong
n (xn)
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be its inverse. It maps the flow xn to the unique con-
gestion density that corresponds to that flow. Thus in the
congested regime, latency can be expressed as a func-
tion of the flow, xn 7→ `ρn(ρcong

n (xn)). This function is
decreasing as the composition of the decreasing function
ρcong
n and the increasing function `ρn.

We can therefore express the latency as a function of the
flow if we additionally specify the congestion state using a
binary variable mn ∈ {0, 1}, such that mn = 0 if n is in
free-flow, and mn = 1 if n is congested.

Definition 1: HQSF latency class
A function

`n :Dn → R+

(xn,mn) 7→ `n(xn,mn)
(2)

defined on the domain1

Dn = [0, xmax
n ]× {0} ∪ (0, xmax

n )× {1}
is a HQSF latency function if it satisfies the following prop-
erties

(A1) In the free-flow regime, the latency `n(·, 0) is single-
valued.

(A2) In the congested regime, the latency xn 7→ `n(xn, 1) is
decreasing on (0, xmax

n ).
(A3) limxn→xmax

n
`n(xn, 1) = an = `n(xmax

n , 0).

ρn

xρn

ρmax
n

xmax
n

ρcritn
ρn

`ρn

an

ρcritn
ρmax
n xn

`n

an
xmax
n

ρn

xρn

ρmax
nρcritn

xmax
n

ρn

`ρn

an

ρcritn
ρmax
n xn

`n

an
xmax
n

ρn

xρn

ρmax
nρcritn

xmax
n

ρn

`ρn

an

ρcritn
ρmax
n xn

`n

an
xmax
n

Figure 2: Examples of flux functions for horizontal
queues (left) and corresponding latency as a function of the
density `ρn(ρn) (middle) and as a function of the flow and
the congestion state `n(xn,mn) (right). The free-flow (respec-
tively congested) regime is shaded in green (respectively red).

Property (A1) is equivalent to the assumption that the flux
function is linear in free-flow, and is the only restrictive
property in the sense discussed above, hence the name of

1The latency in congestion `n(·, 1) is defined on the open interval
(0, xmax

n ). In particular, if xn = 0 or xn = xmax
n then the link is always

considered to be in free-flow. When the link is empty (xn = 0), it is naturally
in free-flow. When it is at maximum capacity (xn = xmax

n ) it is in fact on the
boundary of the free-flow and congestion regions, and we say by convention
that the link is in free-flow.

the latency class. Property (A2) results from the expression
of the latency as the composition `ρn(ρcong

n (xn)), where `ρn is
increasing, and ρcong

n is decreasing. Property (A3) is equivalent
to the continuity of the underlying flux function xρn.

Although it may be more natural to think of the latency
as a non-decreasing function of the density, the above repre-
sentation in terms of flow xn and congestion state mn will
be useful in deriving properties of the Nash equilibria of the
routing game.

Finally, we observe, as an immediate consequence of these
properties, that the latency in congestion is always greater
than the free-flow latency: ∀xn ∈ (0, xmax

n ), `n(xn, 1) > an.
Some examples of HQSF latency functions (and the underlying
flux functions) are illustrated in Figure 2. For a detailed
derivation of an example latency function in a traffic setting,
see Appendix A.

D. The Model

We consider a non-atomic routing game on a parallel
network, shown in Figure 3. Here non-atomic means that the
game involves a continuum of players, where each player
corresponds to an infinitesimal (non-atomic) amount of flow,
[27], [28]. The network has a single source and a single sink.

O D
r

1
2
...
N

r

Figure 3: Network with N parallel links under demand r.

Connecting the source and sink are N parallel links indexed
by n ∈ {1, . . . , N}. We assume, without loss of generality,
that the links are ordered by increasing free-flow latencies.
To simplify the discussion, we further assume that free-flow
latencies are distinct. Therefore we have a1 < a2 < · · · < aN .
The network is subject to a constant positive flow demand r at
the source. We will denote by (N, r) an instance of the routing
game played on a network with N parallel links subject to
demand r. The state of the network is given by a feasible
flow assignment vector x ∈ RN+ such that

∑N
n=1 xn = r

where xn is the flow on link n, and a congestion state vector
m ∈ {0, 1}N where mn = 0 if the link is in free-flow and
mn = 1 if the link is congested, as defined above. All physical
quantities (density and flow) are assumed to be static and
uniform on the link.

Every non-atomic player chooses a route in order to mini-
mize his/her individual latency [26]. If a player chooses link n,
his/her latency is given by `n(xn,mn), where `n is a HQSF
latency function. We assume that players know the latency
functions.

Pure Nash equilibria of the game (which we will simply
refer to as Nash equilibria) are assignments (x,m) such that
every player cannot improve his/her latency by switching to a
different link.

Definition 2: Nash Equilibrium
A feasible assignment (x,m) ∈ RN+×{0, 1}N is a Nash equi-
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librium of the routing game instance (N, r) if ∀n ∈ supp (x),
∀k ∈ {1, . . . , N}, `n(xn,mn) ≤ `k(xk,mk).

Here supp (x) =
{
n ∈ {1, . . . , N}|xn > 0

}
denotes the

support of x. As a consequence of this definition, all links
in the support of x have the same latency `0, and links that
are not in the support have latency greater than or equal to
`0. We will denote by NE(N, r) the set of Nash equilibria
of the instance (N, r). We note that a Nash equilibrium for
the routing game is a static equilibrium, we do not model
dynamics of density or flow. Figure 4 shows an example of a
routing game instance and resulting Nash equilibria.

xn

`n

a1

a2

a3

xn

`n

a1

a2

a3

Figure 4: Example of Nash equilibria for a three-link network.
One equilibrium (left) has one link in free-flow and one con-
gested link. A second equilibrium (right) has three congested
links.

While a Nash equilibrium achieves minimal individual
latencies, it does not minimize, in general, the system cost
or total cost defined as follows:

Definition 3: The total cost of an assignment (x,m) is the
total latency experienced by all players

C(x,m) =

N∑

n=1

xn`n(xn,mn) (3)

As detailed in Section II, under the HQSF latency class,
the routing game may have multiple Nash equilibria that have
different total costs. We are interested, in particular, in Nash
equilibria that have minimal cost, which are referred to as best
Nash equilibria (BNE).

Definition 4: Best Nash Equilibria
The set of best Nash equilibria is the set of equilibria that
minimize the total cost, i.e.

BNE(N, r) = arg min
(x,m)∈NE(N,r)

C(x,m) (4)

E. Stackelberg routing game

In the Stackelberg routing game, a coordinator (a central
authority) is assumed to have control over a positive fraction α
of the total flow demand r. We call α the compliance rate. The
coordinator wants to route the compliant flow αr in a way that
minimizes the system cost, while anticipating the response of
the rest of the players, assumed to choose their routes selfishly
after the strategy of the coordinator is revealed. We will refer
to the flow of selfish players (1 − α)r as the non-compliant
flow. More precisely, the game is played as follows:

• First, the coordinator (the leader) chooses a Stackelberg
strategy, i.e. an assignment s ∈ RN+ of the compliant flow
(such that

∑N
n=1 sn = αr).

• Then, the Stackelberg strategy s of the leader is re-
vealed, and the non-compliant players (followers) choose
their routes selfishly and form a Nash equilibrium
(t(s),m(s)), induced2 by strategy s. By definition, the
induced equilibrium (t(s),m(s)) satisfies

∀n ∈ supp (t(s)) , ∀k ∈ {1, . . . , N},
`n(sn + tn(s),mn(s)) ≤ `k(sk + tk(s),mk(s)) (5)

The total flow on the network is s+t(s), thus the total cost
is C(s+ t(s),m(s)). Note that a Stackelberg strategy s may
induce multiple Nash equilibria in general. However, we define
the assignment (t(s),m(s)) to be the best such equilibrium
(the one with minimal total cost, which will be shown to be
unique in Section III).

We will use the following notation:

• (N, r, α) is an instance of the Stackelberg routing game
played on a parallel network with N links under flow
demand r with compliance rate α. Note that the routing
game (N, r) is a special case of the Stackelberg routing
game with α = 0.

• S(N, r, α) ⊂ RN+ is the set of Stackelberg strategies for
the Stackelberg instance (N, r, α).

• S?(N, r, α) is the set of optimal Stackelberg strategies
defined as

S?(N, r, α) = arg min
s∈S(N,r,α)

C(s+ t(s),m(s)) (6)

F. Main result

We now define a candidate Stackelberg strategy, which
we call the non-compliant first strategy (NCF), and which
we prove to be an optimal Stackelberg strategy. The NCF
strategy corresponds to first computing the best Nash equilib-
rium (t̄, m̄) of the non-compliant flow for the routing game
instance

(
N, (1− α)r

)
, then finding a particular strategy s

that induces (t̄, m̄).
Definition 5: The non-compliant first strategy

Consider the Stackelberg instance (N, r, α). Let (t̄, m̄) be the
best Nash equilibrium of the non-compliant flow, {(t̄, m̄)} =
BNE(N, (1 − α)r), and k̄ = max supp(t̄) be the last link in
its support. Then the non-compliant first strategy, denoted by
NCF(N, r, α), is by definition the Stackelberg strategy given
by

NCF(N, r, α) =

(
0, . . . ,

k̄−1

0,

k̄

xmax
k̄ − t̄k̄, xmax

k̄+1, . . . , x
max
l−1 ,

αr −
( l−1∑

n=k̄

xmax
n − t̄k̄

)
, 0, . . . , 0

)
(7)

2We note that a feasible flow assignment s of compliant flow may fail to
induce a Nash equilibrium (t,m) and therefore is not considered to be a
Stackelberg strategy.
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Setting Vertical queues Horizontal queues, single-valued in free-flow (HQSF)
Model x 7→ `(x)

latency is a function of the flow
x ∈ [0, xmax]

(x,m) 7→ `(x,m)
latency is a function of the flow x ∈ [0, xmax] and the
congestion state m ∈ {0, 1}.

Assumptions x 7→ `(x) is continuously non-
decreasing.
x 7→ x`(x) is convex.

x 7→ `(x, 0) is single-valued.
x 7→ `(x, 1) is continuously decreasing.
limx→xmax `(x, 1) = `(xmax, 0).

Set of Nash
equilibria

Essential uniqueness: if x, x′ are
Nash equilibria, then C(x) =
C(x′) [4], [8].

No essential uniqueness in general.
The number of Nash equilibria is at most 2N (Proposition 4)
The best Nash equilibrium is a single-link-free-flow equilibrium
(Lemma 2)

Optimal
Stackelberg
strategy

NP hard [25] The NCF strategy is optimal and can be computed in polyno-
mial time. (Theorem 1)
The set of optimal Stackelberg strategies can be computed in
polynomial time (Theorem 2)

Table I: Main assumptions and results for the Stackelberg routing game on a parallel network.

xn

`n

a1

t̄1

...

ak̄−1

t̄k̄−1

ak̄

t̄k̄

s̄k̄

...

al−1

s̄l−1

al

s̄l

...

aN

Figure 5: Non-compliant first (NCF) strategy s̄ and its induced
equilibrium. Circles show the best Nash equilibrium (t̄, m̄) of
the non-compliant flow (1 − α)r: link k̄ is in free-flow, and
links {1, . . . , k̄ − 1} are congested. The Stackelberg strategy
s̄ = NCF(N, r, α) is highlighted in blue.

where l is the maximal index in {k̄ + 1, . . . , N} such that
αr −

(∑l−1
n=k̄ x

max
n − t̄k̄

)
≥ 0.

In words, the NCF strategy saturates links one by one,
by increasing index starting from link k̄, the last link used
by the non-compliant flow in the best Nash equilibrium
of (N, (1− α)r). Thus it will assign xmax

k̄
− t̄k̄ to link k̄,

then xmax
k̄+1

to link k̄ + 1, xmax
k̄+2

to link k̄ + 2 and so on, until
the compliant flow is assigned entirely (see Figure 5). The
following theorem states the main result.

Theorem 1: The NCF strategy is an optimal Stackelberg
strategy
Under the class of HQSF latency functions, NCF(N, r, α)
is an optimal Stackelberg strategy for the Stackelberg in-
stance (N, r, α).

We give a proof of Theorem 1 in Section III. We will
also show that for the class of HQSF latency functions,
best Nash equilibria can be computed in polynomial time
in the size N of the network, and as a consequence, the
NCF strategy can also be computed in polynomial time. This
stands in contrast to previous results under the class of non-
decreasing latency functions, for which computing the optimal
Stackelberg strategy is NP-hard [25]. Table I summarizes the
main differences between the classical setting (vertical queues)
and the setting studied in this paper (horizontal queues, under
the additional assumption that latency is single-valued in free-
flow).

II. NASH EQUILIBRIA

In this section, we study Nash equilibria of the routing
game. We show that under the class of HQSF latency func-
tions, there may exist multiple Nash equilibria that have
different costs. Then we partition the set of equilibria into con-
gested equilibria and single-link-free-flow equilibria. Finally,
we characterize the best Nash equilibrium and show that it
can be computed in quadratic time in the number of links.

A. Structure and properties of Nash equilibria

We first give some properties of Nash equilibria. The
following proposition is straightforward.

Proposition 1: Total cost of a Nash Equilibrium
Let (x,m) ∈ NE(N, r) be a Nash equilibrium for
the instance (N, r). Then there exists `0 > 0 such
that ∀n ∈ supp (x), `n(xn,mn) = `0 and ∀n /∈ supp (x),
`n(0, 0) ≥ `0. The total cost of the equilibrium is then
C(x,m) = r`0.

Proposition 2: Let (x,m) ∈ NE(N, r) be a Nash equilib-
rium. Then k ∈ supp (x)⇒ ∀n < k, link n is congested.

Proof: By contradiction, if mn = 0, then
`n(xn,mn) = an < ak ≤ `k(xk,mk), which contradicts
Definition 2 of a Nash equilibrium.

Corollary 1: Support of a Nash equilibrium
Let (x,m) ∈ NE(N, r) be a Nash equilibrium and
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k = max supp (x) be the last link in the support of x (i.e.
the one with the largest free-flow latency). Then we have
supp (x) = {1, . . . , k}.

Proof: Since k ∈ supp (x), we have by Proposition 2 that
∀n < k, link n is congested, thus n ∈ supp (x) (by definition,
a congested link cannot be empty).

No essential uniqueness: For the HQSF latency class, the
essential uniqueness property3 does not hold, i.e. there may
exist multiple Nash equilibria that have different costs, an
example is given in Figure 4.

Single-link-free-flow equilibria and congested equilibria:
The example shows that in general, there may exist multiple
Nash equilibria that have different costs, different congestion
state vectors and different supports. However, not every con-
gestion state vector m ∈ {0, 1}N can be that of a Nash
equilibrium: let (x,m) ∈ NE(N, r) be a Nash equilibrium,
and let k = max supp (x) be the index of the last link in the
support of x. Then by Proposition 2, we have that ∀i < k,
mi = 1, and ∀i > k, mi = 0. Thus we have

• Either m =
(
1, . . . , 1,

k

0, 0, . . . , 0) i.e. the last link in the
support is in free-flow, all other links in the support are
congested. In this case we call (x,m) a single-link-free-
flow equilibrium, and denote the set of such equilibria
by NEf(N, r)

• Or m =
(
1, . . . , 1,

k

1, 0, . . . , 0) i.e. all links in the sup-
port are congested. In this case we call (x,m) a con-
gested equilibrium, and denote the set of such equilibria
by NEc(N, r).

B. Existence of single-link-free-flow equilibria

Let (x,m) be a single-link-free-flow equilibrium, and
let k = max supp (x). We have from Proposition 2
that links {1, . . . , k − 1} are congested and link k is in
free-flow. Therefore we must have ∀n ∈ {1, . . . , k − 1},
`n(xn, 1) = `k(xk, 0) = ak. This uniquely determines the
flow on the congested links:

Definition 6: Congestion flow
Let k ∈ {2, . . . , N}. Then ∀n ∈ {1, . . . , k − 1}, there exists
a unique flow xn such that `n(xn,mn) = ak. We denote this
flow by x̂n(k) and call it k-congestion flow on link n. It is
given by

x̂n(k) = `n(·, 1)−1(ak) (8)

We note that x̂n(k) is decreasing in k, since `n(·, 1)−1 is
decreasing.

Proposition 3: Single-link-free-flow equilibria
(x,m) is a single-link-free-flow equilibrium if and only
if ∃k ∈ {1, . . . , N} such that 0 < r −∑k−1

n=1 x̂n(k) ≤ xmax
k ,

and

x
∆
=
(
x̂1(k), . . . , x̂k−1(k), r −

k−1∑

n=1

x̂n(k), 0, . . . , 0
)

(9)

3The essential uniqueness property states that for the class of non-
decreasing latency functions, all Nash equilibria have the same total cost.
See for example [26], [8], [4].

m
∆
=
(
1, . . . , 1,

k

0, . . . , 0
)

(10)

Illustrations of Equations (10) and (9) are shown in Figure 6.

xn

`n

a1

x̂1(3)

a2

x̂2(3)

a3

r −
2∑

n=1

x̂n(3)

a4

Figure 6: Example of a single-link-free-flow equilibrium.
Link 3 is in free-flow and links 1 and 2 are congested. The
common latency on all links in the support is a3.

Next, we give a necessary and sufficient condition for the
existence of single-link-free-flow equilibria.

Lemma 1: Existence of single-link-free-flow equilibria
Let

rNE(N)
∆
= max
k∈{1,...,N}

{
xmax
k +

k−1∑

n=1

x̂n(k)

}
(11)

A single-link-free-flow equilibrium exists for the in-
stance (N, r) if and only if r ≤ rNE(N).

Proof: If a single-link-free-flow equilibrium exists,
then by Proposition 3, it is of the form given by
Equations (10) and (9) for some k. The flow on
link k is then given by r −∑k−1

n=1 x̂n(k) ≤ xmax
k . Therefore

r ≤ xmax
k +

∑k−1
n=1 x̂n(k) ≤ rNE(N).

We prove the converse by induction on the size N of
the network. Let PN denote the property: ∀r ∈ (0, rNE(N)],
there exists a single-link-free-flow equilibrium for the in-
stance (N, r).

For N = 1, it is clear that if 0 < r ≤ xmax
1 , there is a single-

link-free-flow equilibrium simply given by (x1,m1) = (r, 0).
Now let N ≥ 1, assume PN holds and let us show PN+1.

Let 0 < r ≤ rNE(N + 1) and consider an instance (N + 1, r).
Case 1: If r ≤ rNE(N), then by the induction hy-

pothesis PN , there exists a single-link-free-flow equilibrium
(x,m) for the instance (N, r). Then (x′,m′) defined as
x′ = (x1, . . . , xN , 0) and m′ = (m1, . . . ,mN , 0) is clearly a
single-link-free-flow equilibrium for the instance (N + 1, r).

Case 2: If rNE(N) < r ≤ rNE(N+1) then by Proposition 3,
an equilibrium exists if

0 < r −
N∑

n=1

x̂n(N + 1) ≤ xmax
N+1 (12)
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First, we note that since rNE(N) < rNE(N + 1), then

rNE(N + 1) = xmax
N+1 +

N∑

n=1

x̂n(N + 1)

thus

r ≤ rNE(N + 1) = xmax
N+1 +

N∑

n=1

x̂n(N + 1)

which proves the second inequality in (12). To show the first
inequality, we have

r > rNE(N) ≥ xmax
N +

N−1∑

n=1

x̂n(N)

≥ x̂N (N + 1) +

N−1∑

n=1

x̂n(N + 1)

where the last inequality results from the fact
that x̂n(N) ≥ x̂n(N + 1) and xmax

N ≥ x̂N (N + 1) by
Definition 6 of congestion flow. This achieves the induction.

Corollary 2: The maximum demand r such that the set of
Nash equilibria NE(N, r) is non-empty is rNE(N).

Proof: By the previous Lemma, rNE(N) is a lower
bound on the maximum demand. To show that it is also
an upper bound, suppose that NE(N, r) is non-empty, and
let (x,m) ∈ NE(N, r) and k = max supp (x). Then we have
supp (x) = {1, . . . , k} by Corollary 1, and by Definition 2 of
a Nash equilibrium, ∀n ≤ k, `n(xn,mn) = `k(xk,mk) ≥ ak,
therefore xn ≤ x̂n(k). We also have xk ≤ xmax

k . Combining
the inequalities, we have

r =

k∑

n=1

xn ≤ xmax
k +

k−1∑

n=1

x̂n(k) ≤ rNE(N)

C. Number of equilibria

Proposition 4: An upper bound on the number of equilibria

Consider a routing game instance (N, r). For any given
k ∈ {1, . . . , N}, there is at most one single-link-free-
flow equilibrium and one congested equilibrium with sup-
port {1, . . . , k}. As a consequence, by Corollary 1, the in-
stance (N, r) has at most N single-link-free-flow equilibria
and N congested equilibria.

Proof: We prove the result for single-link-free-flow
equilibria, the proof for congested equilibria is similar.
Let k ∈ {1, . . . , N}, and assume (x,m) and (x′,m′) are
single-link-free-flow equilibria such that max supp (x) =
max supp (x′) = k. We first observe that by Corollary 1, x
and x′ have the same support {1, . . . , k}, and by Proposition 2,
m = m′. Since link k is in free-flow under both equilibria, we
have `k(xk,mk) = `k(x′k,m

′
k) = ak, and by Definition 2 of a

Nash equilibrium, any link in the support of both equilibria has
the same latency ak, i.e. ∀n ≤ k, `n(xn, 1) = `i(x

′
n, 1) = ak.

Since the latency in congestion is injective, we have ∀n ≤ k,
xn = x′n, therefore x = x′.

D. Best Nash equilibrium
In order to study the inefficiency of Nash equilibria, and

the improvement of performance that we can achieve using
optimal Stackelberg routing, we focus our attention on best
Nash equilibria and price of stability [1] as a measure of their
inefficiency.

Lemma 2: Best Nash Equilibrium
For a routing game instance (N, r), r ≤ rNE(N), the unique
best Nash equilibrium is the single-link-free-flow equilibrium
that has smallest support

BNE(N, r) = arg min
(x,m)∈NEf(N,r)

{max supp (x)}

Proof: We first show that a congested equilibrium cannot
be a best Nash equilibrium. Let (x,m) ∈ NE(N, r) be a
congested equilibrium and let k = max supp (x). By Propo-
sition 1, the cost of (x,m) is C(x,m) = `k(xk, 1)r > akr.
We observe that (x,m) restricted to {1, . . . , k} is an equi-
librium for the instance (k, r), thus by Corollary 2, r ≤
rNE(k), and by Lemma 1, there exists a single-link-free-
flow equilibrium (x′,m′) for (k, r), with cost C(x′,m′) ≤
akr. Clearly, (x′′,m′′) defined as x′′ = (x′1, . . . , x

′
k, 0, . . . , 0)

and m′′ = (m′1, . . . ,m
′
k, 0, . . . , 0), is a single-link-free-flow

equilibrium for the original instance (N, r), with cost
C(x′′,m′′) = C(x′,m′) ≤ akr < C(x,m), which proves
that (x,m) is not a best Nash equilibrium. Therefore best
Nash equilibria are single-link-free-flow equilibria. And since
the cost of a single-link-free-flow equilibrium (x,m) is simply
C(x,m) = akr where k = max supp (x), it is clear that the
smaller the support, the lower the total cost. Uniqueness
follows from Proposition 4.

Complexity of computing the Best Nash equilibrium:
Lemma 2 gives a simple algorithm for computing the best
Nash equilibrium for any instance (N, r): simply enumerate
all single-link-free-flow equilibria (there are at most N such
equilibria by Proposition 4), and select the one with the
smallest support. This is detailed in Algorithm 1.

Algorithm 1 Best Nash Equilibrium

procedure bestNE(N, r)
Inputs: Size of the network N, demand r
Outputs: Best Nash equilibrium (x,m)
for k ∈ {1, . . . , N}

let (x,m) = freeFlowConfig(k)
if xk ∈ [0, xmax

k ]
return (x,m)

return No-Solution

procedure freeFlowConfig(k)
Inputs: Free-flow link index k
Outputs: Assignment (x,m) = (xr,k,mk)
for n ∈ {1, . . . , N}

if n < k
xn = x̂n(k), mn = 1

elseif n == k

xk = r −∑k−1
n=1 xn, mk = 0

else
xn = 0, mn = 0

return (x,m)

The congestion flow values {x̂n(k), 1 ≤ n < k ≤ N} can
be precomputed in O(N2). There are at most N calls to
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freeFlowConfig, which runs in O(N) time, thus bestNE
runs in O(N2) time. This shows that the best Nash equilibrium
can be computed in quadratic time.

III. OPTIMAL STACKELBERG STRATEGIES

In this section, we prove our main result that NCF strategy
is an optimal Stackelberg strategy (Theorem 1). Furthermore,
we show that the entire set of optimal strategies S?(N, r, α)
can be computed in a simple way from the NCF strategy.

Let (t̄, m̄) be the best Nash equilibrium for the in-
stance (N, (1− α)r). It represents the best Nash equilibrium
of the non-compliant flow (1−α)r when it is not sharing the
network with the compliant flow. Let k̄ = max supp (t̄) be
the last link in the support of t̄. Let s̄ be the NCF strategy
defined by equation (7). Then the total flow x̄ = s̄+ t̄ is given
by

x̄ =

(
x̂1(k̄), . . . , x̂k̄−1(k̄), xmax

k̄ , xmax
k̄+1, . . . , x

max
l−1 ,

r −
k̄−1∑

n=1

x̂n(k̄)−
l−1∑

n=k̄

xmax
n , 0, . . . , 0

)
(13)

and the corresponding latencies are

(
ak̄, . . . ,

k̄

ak̄, ak̄+1, . . . , aN

)
(14)

Figure 5 shows the total flow x̄n = s̄n+t̄n on each link. Under
(x̄, m̄), links

{
1, . . . , k̄ − 1

}
are congested and have latency

ak̄, links
{
k̄, . . . , l − 1

}
are in free-flow and at maximum

capacity, and the remaining flow is assigned to link l.
We observe that for any Stackelberg strategy s ∈ S(N, r, α),

the induced best Nash equilibrium (t(s),m(s)) is a single-
link-free-flow equilibrium by Lemma 2, since (t(s),m(s))
is the best Nash equilibrium for the instance (N,αr) and
latencies

˜̀
n : D̃n → R+

(xn,mn) 7→ `n(sn + xn,mn)
(15)

where D̃n
∆
= [0, x̃max

n ] × {0} ∪ (0, x̃max
n ) × {1} and

x̃max
n

∆
= xmax

n − sn.

A. Proof of Theorem 1: the NCF strategy is an optimal
Stackelberg strategy

Let s ∈ S(N, r, α) be a Stackelberg strategy and
(t,m) = (t(s),m(s)) be the best Nash equilibrium of the
non-compliant flow, induced by s. Let x = s + t(s) and
x̄ = s̄+ t̄ be the total flows. To prove Theorem 1, we seek to
show that C(x,m) ≥ C(x̄, m̄).

The proof is organized as follows: we first compare the
supports of the induced equilibria (Lemma 3), then show
that links {1, . . . , l − 1} are more congested under assign-
ment (x,m) than under (x̄, m̄), in the following sense: they
hold less flow and have greater latency (Lemma 4). Then we
conclude by showing the desired inequality.

Lemma 3: Let k = max supp (t) and k̄ = max supp (t̄).
Then k ≥ k̄.

In words, the last link in the support of t(s) has higher free-
flow latency than the last link in the support of t̄.

Proof: We first note that (s + t(s),m) restricted to
supp (t(s)) is a Nash equilibrium. Then since link k is
in free-flow we have `k(sk + tk(s),mk) = ak, and since
k ∈ supp (t(s)), we have by definition that any other link
has greater or equal latency. In particular, ∀n ∈ {1, . . . k − 1},
`n(sn+ tn(s),mn) ≥ ak, thus sn+ tn(s) ≤ x̂n(k). Therefore
we have

∑k
n=1 sn + tn(s) ≤ ∑k−1

n=1 x̂n(k) + xmax
k . But∑k

n=1(sn + tn(s)) ≥ ∑
n∈supp(t) tn(s) = (1 − α)r since

supp (t) ⊆ {1, . . . , k}. Therefore (1− α)r ≤∑k−1
n=1 x̂n(k) +

xmax
k . By Lemma 1, there exists a single-link-free-flow equi-

librium for the instance (N, (1−α)r) supported on the first k
links. Let (t̃, m̃) be such an equilibrium. The cost of this equi-
librium is (1−α)r`0 where `0 ≤ ak is the free-flow latency of
the last link in the support of t̃. Thus C(t̃, m̃) ≤ (1− α)rak.
Since by definition (t̄, m̄) is the best Nash equilibrium for the
instance (N, (1− α)r) and has cost (1−α)rak̄, we must have
(1− α)rak̄ ≤ (1− α)rak, i.e. ak̄ ≤ ak.

Lemma 4: Under assignment (x,m), the links {1, . . . , l −
1} have greater (or equal) latency and hold less (or
equal) flow than under (x̄, m̄), i.e. ∀n ∈ {1, . . . , l − 1},
`n(xn,mn) ≥ `n(x̄n, m̄n) and xn ≤ x̄n.

Proof: Since k ∈ supp (t), we have by definition
of a Stackelberg strategy and its induced equilibrium that
∀n ∈ {1, . . . , k − 1}, `n(xn,mn) ≥ `k(xk,mk) ≥ ak, see
equation (5). We also have by definition of the candi-
date assignment (x̄, m̄) and the resulting latencies given
by Equation (14), ∀n ∈ {1, . . . , k̄ − 1}, n is congested and
`n(xn,mn) = ak̄. Thus using the fact that k ≥ k̄, we have
∀n ∈ {1, . . . , k̄ − 1}, `n(xn,mn) ≥ ak ≥ ak̄ = `n(x̄n, m̄n),
and xn ≤ x̂n(k) ≤ x̂n(k̄) = x̄n.

We have from Equation (13) that ∀n ∈ {k̄, . . . , l − 1}, n
is in free-flow and at maximum capacity under (x̄, m̄) (i.e.
x̄n = xmax

n and `n(x̄n) = an). Thus ∀n ∈ {k̄, . . . , l − 1},
`n(xn,mn) ≥ an = `n(x̄n, m̄n) and xn ≤ xmax

n = x̄n. This
completes the proof of the Lemma.

We can now show the desired inequality. We have

C(x,m) =

N∑

n=1

xn`n(xn,mn)

=

l−1∑

n=1

xn`n(xn,mn) +

N∑

n=l

xn`n(xn,mn)

≥
l−1∑

n=1

xn`n(x̄n, m̄n) +

N∑

n=l

xnal (16)

where the last inequality is obtained using Lemma 4 and the
fact that ∀n ∈ {l, . . . , N}, `n(xn,mn) ≥ an ≥ al. Then
rearranging the terms we have

C(x,m) ≥
l−1∑

n=1

(xn − x̄n)`n(x̄n, m̄n)

+

l−1∑

n=1

x̄n`n(x̄n, m̄n) +

N∑

n=l

xnal
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Then we have ∀n ∈ {1, . . . , l − 1},
(xn − x̄n)(`n(x̄n, m̄n)− al) ≥ 0

(by Lemma 4, xn − x̄n ≤ 0, and we have `n(x̄n, m̄n) ≤ al
by Equation (14)). Thus

l−1∑

n=1

(xn − x̄n)`n(x̄n, m̄n) ≥
l−1∑

n=1

(xn − x̄n)al (17)

and we have

C(x,m) ≥
l−1∑

n=1

(xn − x̄n)al +

l−1∑

n=1

x̄n`n(x̄n, m̄n) +

N∑

n=l

xnal

= al

(
N∑

n=1

xn −
l−1∑

n=1

x̄n

)
+

l−1∑

n=1

x̄n`n(x̄n, m̄n)

= al

(
r −

l−1∑

n=1

x̄n

)
+

l−1∑

n=1

x̄n`n(x̄n, m̄n)

But al

(
r −∑l−1

n=1 x̄n

)
= x̄l`l(x̄l, m̄l) since

supp (x̄) = {1, . . . , l} and `l(x̄l, m̄l) = al. Therefore

C(x,m) ≥ x̄l`l(x̄l, m̄l) +

l−1∑

n=1

x̄n`n(x̄n, m̄n) = C(x̄, m̄)

This completes the proof of Theorem 1.

�

Therefore the NCF strategy is an optimal Stackelberg strat-
egy, and it can be computed in polynomial time since it is
generated in linear time after computing the best Nash equi-
librium BNE(N, (1− α)r), which was shown to be quadratic
in N .

The NCF strategy is, in general, not the unique optimal
Stackelberg strategy. In the next section, we show that any
optimal Stackelberg strategy can in fact be easily expressed in
terms of the NCF strategy.

B. The set of optimal Stackelberg strategies

In this section, we show that the set of optimal Stackelberg
strategies S?(N, r, α) can be generated from the NCF strategy.
This shows in particular that the NCF strategy is robust, in a
sense explained below.

Let s̄ = NCF(N, r, α) be the non-compliant first strategy,
{(t̄, m̄)} = BNE(N, (1 − α)r) be the Nash equilibrium
induced by s̄, and k̄ = max supp (t̄) the last link in the
support of the induced equilibrium, as defined above. By
definition, the NCF strategy s̄ assigns zero compliant flow to
links

{
1, . . . , k̄ − 1

}
, and saturates links one by one, starting

from k̄ (see equation (7) and Figure 5).
To give an example of an optimal Stackelberg strategy

other than the NCF strategy, consider a strategy s defined by
s = s̄+ ε where

ε = (ε1, 0, . . . , 0,

k̄

− ε1, 0, . . . , 0)

and is such that s1 = ε1 ∈ [0, x̂1(k̄)], and sk̄ = s̄k̄ − ε1 ≥ 0
(See Figure 7). Strategy s will induce t(s) = t̄− ε,

xn

`n

a1

t1

s1 = ε1

...

ak̄−1

ak̄

tk̄

sk̄ = s̄k̄ − ε1ε1

...

al−1

sl−1

al

sl

...

aN

Figure 7: Example of an optimal Stackelberg strat-
egy s = s̄− ε. The circles show the best Nash equilib-
rium (t̄, m̄). The strategy s is highlighted in green.

and the resulting total cost is minimal since
C(s+ t(s)) = C(s̄+ ε+ t̄− ε) = C(s̄+ t̄). This shows
that s is an optimal Stackelberg strategy. More generally, the
following holds:

Lemma 5: Consider a Stackelberg strategy s of the form
s = s̄+ ε where

ε =
(
ε1, ε2, . . . , εk̄−1,−

k̄−1∑

n=1

εn,

k̄+1

0, . . . , 0
)

(18)

and ε is such that

εn ∈ [0, x̂n(k̄)] ∀n ∈
{

1, . . . , k̄ − 1
}

(19)

s̄k̄ ≥
k̄−1∑

n=1

εn (20)

Then s is an optimal Stackelberg strategy.
Proof: We show that s = s̄+ ε is a feasible assignment

of the compliant flow αr, and that the induced equilibrium of
the followers is (t(s),m(s)) = (t̄− ε, m̄).

Since
∑N
n=1 εn = 0 by definition (18) of ε, we have∑N

n=1 sn =
∑N
n=1 s̄n = αr. We also have

• ∀n ∈ {1, . . . , k̄ − 1}, sn = εn ∈ [0, x̂n(k̄)] by Equa-
tion (19). Thus sn ∈ [0, xmax

n ].
• sk̄ = s̄k̄+εk̄ ≥ 0 by Equation (20), and sk̄ ≤ s̄k̄ ≤ xmax

k̄
.

• ∀n ∈ {k̄ + 1, . . . , N}, sn = s̄n ∈ [0, xmax
n ].

This shows that s is a feasible assignment. To show that s
induces (t̄− ε, m̄), we need to show that ∀n ∈ supp (t̄− ε),
∀k ∈ {1, . . . , N},
`n(s̄n + εn + t̄n − εn, m̄n) ≤ `k(s̄k + εk + t̄k − εk, m̄k)

This is true ∀n ∈ supp (t̄), by definition of (t̄, m̄) and
Equation (5). To conclude, we observe that supp (t̄− ε) ⊂
supp (t̄).

This shows that the NCF strategy is robust to perturbations:
even if the strategy s̄ is not realized exactly, it may still be
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optimal if the perturbation ε satisfies the conditions given
above.

The converse of the previous Lemma is true. This gives
a necessary and sufficient condition for optimal Stackelberg
strategies, given in the following Theorem.

Theorem 2: The set of optimal Stackelberg strategies
The set of optimal Stackelberg strategies S?(N, r, α) is the set
of strategies s of form s = s̄+ ε where s̄ = NCF(N, r, α) is
the non-compliant first strategy, and ε satisfies Equations (18),
(19) and (20).

Proof: We prove the converse of Lemma 5. Let
s ∈ S?(N, r, α) be an optimal Stackelberg strategy,
(t,m) = (t(s),m(s)) the equilibrium of non-compliant
flow induced by s, k = max supp (t) the last link in the
support of t, and x = s+ t the total flow assignment.

We first show that x = x̄. By optimality of both s and s̄,
we have C(x,m) = C(x̄, m̄), therefore inequalities (16) and
(17) in the proof of Theorem 1 must hold with equality. In
particular, to have equality in (16) we need to have

l−1∑

n=1

xn(`n(xn,mn)− `n(x̄n, m̄n))

+

N∑

n=l

xn(`n(xn,mn)− al) = 0 (21)

The terms in both sums are non-negative, therefore

xn(`n(xn,mn)− `n(x̄n, m̄n)) = 0 ∀n ∈ {1, . . . , l − 1}

(22)
xn(`n(xn,mn)− al) = 0 ∀n ∈ {l, . . . , N}

(23)

and to have equality in (17) we need to have

(xn − x̄n)(`n(x̄n, m̄n)− al) = 0 ∀n ∈ {1, . . . , l − 1}
(24)

Let n ∈ {1, . . . , l − 1}. From the expression (14) of
the latencies under x̄, we have `n(x̄n, m̄n) < al,
thus from equality (24) we have xn − x̄n = 0. Now let
n ∈ {l + 1, . . . N}. We have by definition of the latency func-
tions, `n(xn,mn) ≥ an > al, thus from equality (23), xn = 0.
We also have from the expression (13), x̄n = 0. Therefore
xn = x̄n ∀n 6= l, but since x and x̄ are both assignments of
the same total flow r, we also have xl = x̄l, which proves
x = x̄.

Next we show that k = k̄. We have from the proof of
Theorem 1 that k ≥ k̄. Assume by contradiction that k > k̄.
Then since k ∈ supp (t), we have by definition of the induced
followers’ assignment in Equation (5), ∀n ∈ {1, . . . , N},
`n(xn,mn) ≥ `k(xk,mk). And since `k(xk,mk) ≥ ak > ak̄,
we have (in particular for n = k̄) `k̄(xk̄,mk̄) > ak̄, i.e.
link k̄ is congested under (x̄, m̄), thus xk̄ > 0. Finally, since
`k̄(x̄k̄, m̄k̄) = ak̄, we have `k̄(x̄k̄, m̄k̄) > `k̄(x̄k̄, m̄k̄). There-
fore xk̄(`k̄(xk̄,mk̄)− `k̄(x̄k̄, m̄k̄)) > 0, since k̄ < k ≤ l, this
contradicts Equation (22).

Now let ε = s − s̄. We want to show that ε satisfies
equations (18), (19) and (20).

First, we have ∀n ∈
{

1, . . . , k̄ − 1
}

, s̄n = 0, thus
εn = sn − s̄n = sn. We also have ∀n ∈

{
1, . . . , k̄ − 1

}
,

0 ≤ sn ≤ xn, xn = x̄n (since x = x̄), and x̄n = x̂n(k̄) (by
Equation (13)), therefore 0 ≤ sn ≤ x̂n(k̄). This proves (19).

Second, we have ∀n ∈
{
k̄ + 1, . . . , N

}
, tn = t̄n = 0 (since

k = k̄), and xn = x̄n (since x = x̄) thus εn = sn − s̄n =
xn − tn − x̄n + t̄n = 0.

Third, we have
∑N
n=1 εn = 0 since s and s̄ are assignments

of the same compliant flow αr, thus εk̄ = −∑n 6=k̄ εn =

−∑k̄−1
n=1 εn. This proves (18).

Finally, we readily have (20) since sk̄ ≥ 0 by definition
of s.

IV. PRICE OF STABILITY UNDER OPTIMAL STACKELBERG
ROUTING

To quantify the inefficiency of Nash equilibria, and the
improvement that can be achieved using Stackelberg routing,
several metrics have been used including price of anarchy [27],
[26] and price of stability [1]. We use price of stability as a
metric, which is defined as the ratio between the cost of the
best Nash equilibrium and the cost of the social optimum4. Let
(x?,0) denote the social optimum of the instance (N, r) – the
social optimum is simply the free-flow assignment that satu-
rates links one by one by increasing index, see Appendix B.
Let s̄ be the non-compliant first strategy NCF(N, r, α), and
(t(s̄),m(s̄)) the induced equilibrium of the followers. The
price of stability of the Stackelberg instance NCF(N, r, α) is

POS(N, r, α) =
C (s̄+ t(s̄),m(s̄))

C(x?,0)

where s̄ is the NCF strategy, and (t̄, m̄) its induced equi-
librium. The improvement achieved by optimal Stackelberg
routing with respect to the Nash equilibrium (α = 0) can be
measured using value of altruism [2], defined as

VOA (N, r, α) =
POS(N, r, 0)

POS(N, r, α)

This terminology refers to the improvement achieved by hav-
ing a fraction α of altruistic (or compliant) players, compared
to a situation where everyone is selfish.

We give the expressions of price of stability and value of
altruism in the case of a two-link network, as a function of
the compliance rate α ∈ [0, 1] and demand r.

Case 1: 0 ≤ (1 − α)r ≤ xmax
1 . In this case,

link 1 can accommodate all the non-compliant flow,
thus the induced equilibrium of the followers is
(t(s̄),m(s̄)) =

(
((1− α)r, 0), (0, 0)

)
, and by Equation (7)

the total flow induced by s̄ is s̄ + t(s̄) = (xmax
1 , r − xmax

1 )
and coincides with the social optimum. Therefore, the price
of stability is one.

Case 2: xmax
1 < (1 − α)r ≤ xmax

2 + x̂1(2). Observe
that this case can only occur if xmax

2 + x̂1(2) > xmax
1 . In

this case, link 1 cannot accommodate all the non-compliant

4Price of anarchy is defined as the ratio between the costs of the worst Nash
equilibrium and the social optimum. For the case of non-decreasing latency
functions, the price of anarchy and the price of stability coincide since all
Nash equilibria have the same cost by the essential uniqueness property.
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xn

`n

a1

xmax
1

a2

r − xmax
1

(a) Social optimum

xn

`n

a1

x̂1(2)

a2

r − x̂1(2)

(b) Best Nash equilibrium

Figure 8: Social optimum and best Nash equilibrium when the
demand exceeds the capacity of the first link (r > xmax

1 ). The
area of the shaded regions represents the total costs of each
assignment.

flow, and the induced Nash equilibrium (t(s̄),m(s̄)) is then
supported on both links. It is equal to (x2,(1−α)r,m2) =(
(x̂1(2), (1 − α)r − x̂1(2)), (1, 0)

)
, and the total flow is

s̄+ t(s̄) = (x̂1(2), r − x̂1(2)), with total cost a2r (Figure 8b).
The social optimum is (x?,m?) =

(
(xmax

1 , r−xmax
1 ), (0, 0)

)

(see Appendix B), with total cost a1x
max
1 + a2(r − xmax

1 )
(Figure 8a). Therefore the price of stability is

POS(2, r, α) =
ra2

ra2 − xmax
1 (a2 − a1)

=
1

1− xmax
1

r

(
1− a1

a2

)

We observe that for a fixed flow demand r > xmax
1 , the price

of stability is an increasing function of a2/a1. Intuitively, the
inefficiency of Nash equilibria increases when the difference in
free-flow latency between the links increases. And as a2 → a1,
the price of stability goes to 1.

r

POS

1

xmax
1

a2/a1

xmax
2 + x̂1(2)

(a) Price of stability, α = 0

r

POS

1

xmax
1 /(1− α)

a2/a1

xmax
2 + x̂1(2)

(b) Price of stability, α = 0.2

r

VOA

1

xmax
1 /(1− α)

a2/a1

xmax
2 + x̂1(2)

(c) Value of altruism, α = 0.2

Figure 9: Price of stability and value of altruism on a two-link
network. Here we assume that x̂1(2) + xmax

2 > xmax
1 .

When the compliance rate is α = 0, the price of stability
attains a supremum equal to a2/a1, at r = (xmax

1 )+ (Fig-

ure 9a). This shows that selfish routing is most costly when
the demand is slightly above critical value rNE(1) = xmax

1 .
This also shows that for the general class of HQSF latencies on
parallel networks, the price of stability is unbounded, since one
can design an instance (2, r) such that the maximal price of
stability a2/a1 is arbitrarily large. Under optimal Stackelberg
routing (α > 0), the price of stability attains a supremum
equal to 1/(α+(1−α)(a1/a2)) at r =

(
xmax

1 /(1−α)
)+

. We
observe in particular that the supremum is decreasing in α,
and that when α = 1 (total control), the price of stability is
identically one.

Therefore optimal Stackelberg routing can significantly de-
crease price of stability when r ∈ (xmax

1 , xmax
1 /(1−α)). This

can occur for small values of the compliance rate in situations
where the demand slightly exceeds the capacity of the first
link (Figure 9c).

The same analysis can be done for a general network:
given the latency functions on the links, one can compute
the price of stability as a function of the flow demand r and
the compliance rate α, using the form of the NCF strategy
together with Algorithm 1 to compute the BNE. Computing
the price of stability function reveals critical values of demand,
for which optimal Stackelberg routing can lead to a significant
improvement. This is discussed in further detail in the next
section, using an example network with 4 links.

V. NUMERICAL RESULTS

In this section, we apply the previous results to a scenario of
freeway traffic from the San Francisco Bay Area. Four parallel
highways are chosen starting in San Francisco and ending in
San Jose: I-101, I-280, I-880 and I-580 (Figure 1). We analyze
the inefficiency of Nash equilibria, and show how optimal
Stackelberg routing (using the NCF strategy) can improve the
efficiency.
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Figure 10: Latency functions on an example highway network.
Latency is in minutes, and demand is in cars/minute.

Figure 10 shows the latency functions for the highway
network, assuming a triangular fundamental diagram for each
highway (see Appendix A for a derivation of the latency
function from a triangular fundamental diagram). Under free-
flow conditions, I-101 is the fastest route available between
San Francisco and San Jose. When I-101 becomes congested,
other routes represent viable alternatives.

We computed price of stability and value of altruism (de-
fined in the previous section) as a function of the demand r for
different compliance rates. The results are shown in Figure 11.
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We observe that for a fixed compliance rate, the price of stabil-
ity is piecewise continuous in the demand (Figure 11a), with
discontinuities corresponding to an increase in the cardinality
of the equilibrium’s support (and a link transitioning from free-
flow to congestion). If a transition exists for link n, it occurs
at critical demand r = r(α)(n), defined to be the infimum
demand r such that n is congested under the equilibrium
induced by NCF(N, r, α).
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(a) Price of stability
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(b) Value of altruism

Figure 11: Price of stability and value of altruism as a function
of the demand r for different values of compliance rate α.

It can be shown that r(α)(n) = rNE(n)/(1 − α), and we
have in particular rNE(n) = r(0)(n). Therefore if a link n is
congested under best Nash equilibrium (r > rNE(n)), optimal
Stackelberg routing can decongest n if r(α)(n) ≥ r. In particu-
lar, when the demand is slightly above critical demand r(0)(n),
link n can be decongested with a small compliance rate. This
is illustrated by the numerical values of price of stability on
Figure 11a, where a small compliance rate (α = 0.05) achieves
high value of altruism when the demand is slightly above the
critical values. This shows that optimal Stackelberg routing
can achieve a significant improvement in efficiency, especially
when the demand is near one of the critical values r(α)(n).

Figure 12 shows price of stability and value of altruism as
a function of the demand r ∈ [0, rNE(N)] and compliance
rate α ∈ [0, 1]. We observe in particular that for a fixed
value of demand, price of stability is a piecewise constant
function of α. Computing this function can be useful for
efficient planning and control, since it informs the central
coordinator of the critical compliance rates that can achieve a
strict improvement. For instance, if the demand on the example
network is 1100 cars/minute, price of stability is constant for
compliance rates α ∈ [0.14, 0.46]. Therefore if a compliance
rate greater than 0.46 is not feasible, the controller may prefer
to implement a control strategy with α = 0.14, since further
increasing the compliance rate will not improve efficiency, and
may incur additional external cost (due to incentivizing more
drivers, for example).

VI. SUMMARY AND CONCLUDING REMARKS

We introduced a new class of latency functions to model
congestion on networks with horizontal queues, and studied
the resulting Nash equilibria for non-atomic, static routing
games on parallel networks. We showed that the essential
uniqueness property does not hold for the HQSF class of
latency, and that the number of equilibria is at most 2N . We
also characterized the best Nash equilibrium.

(a) Price of stability

(b) Value of altruism

Figure 12: Price of stability (12a) and value of altruism (12b)
as a function of the compliance rate α and demand r. Iso-α
lines are plotted for α = 0.03 (dashed), α = 0.15 (dot-dashed),
and α = 0.5 (solid).

In the Stackelberg routing game, we proved that the Non-
compliant First (NCF) strategy is optimal, and that it can be
computed in polynomial time. We illustrated these results us-
ing an example network for which we computed the decrease
in inefficiency that can be achieved using optimal Stackelberg
routing. This example showed that when the demand is near
critical values rNE(n), optimal Stackelberg routing can achieve
a significant improvement in efficiency, even for small values
of compliance rate.

On the one hand, these results show that careful routing
of a small compliant population can dramatically improve the
efficiency of the network. On the other hand, they also indicate
that for certain demand and compliance values, Stackelberg
routing can be completely ineffective. Therefore identifying
the ranges where optimal Stackelberg routing does improve
the efficiency of the network is crucial for effective planning
and control.

We believe this work offers several directions of future
research: the work presented here only considers parallel
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networks under static assumptions (constant flow demand
r, and static equilibria) and one question is whether these
equilibria are stable in the dynamic sense, and how one may
steer the system from one equilibrium to a better one: consider
for example the case where the players are stuck in a congested
equilibrium, and assume a coordinator has control over a
fraction of the flow. Can the coordinator steer the system to a
single-link-free-flow equilibrium by decongesting a link? And
what is the minimal compliance rate needed to achieve this?
Another question is how robust are these results? Do they
hold for general network topologies? We believe that some
of our results extend to general network topologies, but we
foresee interesting technical challenges in formalizing these
extensions.

APPENDIX

A. A HQSF latency function from a triangular fundamental
diagram of traffic

In this section we derive one example of a HQSF latency
function `n in a traffic setting. We consider a triangular
fundamental diagram, used to model traffic flow for example
in [9], [10], i.e. a piecewise affine flux function xρn, given by

xρn(ρn) =

{
vfnρn if ρn ∈ [0, ρcrit

n ]

xmax
n

ρn−ρmax
n

ρcrit
n −ρmax

n
if ρn ∈ (ρcrit

n , ρmax
n ]

The flux function is linear in free-flow with positive
slope vfn called free-flow speed, affine in congestion with
negative slope vcn

∆
= xmax

n /(ρcrit
n −ρmax

n ), and continuous (thus
vfnρ

crit
n = xmax

n ). By definition, it satisfies the assumptions in
section I-B. The latency is given by Lnρn/xρn(ρn) where Ln
is the length of link n. It is then a simple function of the
density

`ρn(ρn) =

{
Ln

vfn
ρn ∈ [0, ρcrit

n ]
Lnρn

vcn(ρn−ρmax
n ) ρn ∈ (ρcrit

n , ρmax
n ]

which can be expressed as two functions of flow: a constant
function `n(·, 0) when the link is in free-flow, and a decreasing
function `n(·, 1) when the link is congested

`n(xn, 0) =
Ln

vfn

`n(xn, 1) = Ln

(
ρmax
n

xn
+

1

vcn

)

This defines a function `n that satisfies the assumptions of
Definition 1, and thus belongs to the HQSF latency class.
Figure 2 shows one example of a triangular fundamental
diagram (top left) and the corresponding latency function `n
(top right).

B. Social optimal assignments

Consider an instance (N, r) where the flow demand r
does not exceed the maximum capacity of the net-
work, i.e. r ≤ ∑

n x
max
n . A social optimal assignment

is an assignment that minimizes the total cost function

C(x,m) =
∑
n xn`n(xn,mn), i.e. it is a solution to the

following Social Optimum (SO) optimization problem

minimize
x∈

∏N
n=1[0,xmax

n ]

m∈{0,1}N

N∑

n=1

xn`n(xn,mn) (SO)

subject to
N∑

n=1

xn = r

Proposition 5: (x?,m?) is optimal for (SO) only if
∀n ∈ {1, . . . , N}, m?

n = 0.
Proof: This follows immediately from the fact the latency

on a link in congestion is always greater than the latency of
the link in free-flow `n(xn, 1) > `n(xn, 0) ∀xn ∈ (0, xmax

n ).

As a consequence of the previous proposition, and using the
fact that the latency is constant in free-flow `n(xn, 0) = an,
the social optimum can be computed by solving the following
equivalent linear program

minimize
x∈

∏N
n=1[0,xmax

n ]

N∑

n=1

xnan

subject to
N∑

n=1

xn = r

Then since the links are ordered by increasing free-flow
latency a1 < · · · < aN , the social optimum is simply given
by the assignment that saturates most efficient links first.
Formally, if k0 = max

{
k|r ≥∑k

n=1 x
max
n

}
then the social

optimal assignment is given by x? =

(
xmax

1 , . . . , xmax
k0−1, r −

∑k0−1
n=1 xmax

n , 0, . . . , 0

)
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