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Abstract

We formulate and study a general family of (continuous-time) stochastic dynamics
for accelerated first-order minimization of smooth convex functions.
Building on an averaging formulation of accelerated mirror descent, we propose a
stochastic variant in which the gradient is contaminated by noise, and study the
resulting stochastic differential equation. We prove a bound on the rate of change
of an energy function associated with the problem, then use it to derive estimates
of convergence rates of the function values (almost surely and in expectation),
both for persistent and asymptotically vanishing noise. We discuss the interaction
between the parameters of the dynamics (learning rate and averaging rates) and the
covariation of the noise process. In particular, we show how the asymptotic rate of
covariation affects the choice of parameters and, ultimately, the convergence rate.

1 Introduction

We consider the constrained convex minimization problem

min
x∈X

f(x),

where X is a closed, convex, compact subset of Rn, and f is a proper closed convex function,
assumed to be differentiable with Lipschitz gradient, and we denote X ? ⊂ X the set of its minimizers.
First-order methods play an important role in minimizing such functions, in particular in large-scale
machine learning applications, in which the dimensionality (number of features) and size (number of
samples) in typical datasets makes higher-order methods intractable. Many such algorithms can be
viewed as a discretization of continuous-time dynamics. The simplest example is gradient descent,
which can be viewed as the discretization of the gradient flow dynamics ẋ(t) = −∇f(x(t)), where
ẋ(t) denotes the time derivative of a C1 trajectory x(t). An important generalization of gradient
descent was developed by Nemirovsky and Yudin [1983], and termed mirror descent: it couples a
dual variable z(t) and its “mirror” primal variable x(t). More specifically, the dynamics are given by

MD

{
ż(t) = −∇f(x(t))

x(t) = ∇ψ∗(z(t)), (1)

where ∇ψ∗ : Rn → X is a Lipschitz function defined on the entire dual space Rn, with values in the
feasible set X ; it is often referred to as a mirror map, and we will recall its definition and properties
in Section 2. Mirror descent can be viewed as a generalization of projected gradient descent, where
the Euclidean projection is replaced by the mirror map ∇ψ∗ [Beck and Teboulle, 2003]. This makes
it possible to adapt the choice of the mirror map to the geometry of the problem, leading to better
dependence on the dimension n, see [Ben-Tal and Nemirovski, 2001], [Ben-Tal et al., 2001].

Continuous-time dynamics Although optimization methods are inherently discrete, the
continuous-time point of view can help in their design and analysis, since it can leverage the
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rich literature on dynamical systems, control theory, and mechanics, see [Helmke and Moore, 1994],
[Bloch, 1994], and the references therein. Continuous-time models are also commonly used in finan-
cial applications, such as option pricing [Black and Scholes, 1973], even though the actions are taken
in discrete time. In convex optimization, beyond simplifying the analysis, continuous-time models
have also motivated new algorithms: mirror descent is one such example, since it was originally
motivated in continuous time (Chapter 3 in [Nemirovsky and Yudin, 1983]). In a more recent line
of work ([Su et al., 2014], [Krichene et al., 2015], [Wibisono et al., 2016]), Nesterov’s accelerated
method [Nesterov, 1983] was shown to be the discretization of a second-order ordinary differential
equation (ODE), which, in the unconstrained case, can be interpreted as a damped non-linear oscilla-
tor [Cabot et al., 2009, Attouch et al., 2015]. This motivated a restarting heuristic [O’Donoghue and
Candès, 2015], which aims at further dissipating the energy. Krichene et al. [2015] generalized this
ODE to mirror descent, and gave an averaging interpretation of accelerated dynamics by writing it
as two coupled first-order ODEs. This is the starting point of this paper, in which we introduce and
study a stochastic variant of accelerated mirror descent.

Stochastic dynamics and related work The dynamics that we have discussed so far are deter-
ministic first-order dynamics, since they use the exact gradient ∇f . However, in many machine
learning applications, evaluating the exact gradient ∇f can be prohibitively expensive, e.g. in
regularized empirical risk minimization problems, where the objective function f involves the sum
of loss functions over a training set, of the form f(x) = 1

|I|
∑
i∈I fi(x) + g(x), where I indexes

the training samples, and g is a regularization function1. Instead of computing the exact gradient
∇f(x) = 1

|I|
∑
i∈I ∇fi(x) + ∇g(x), a common approach is to compute an unbiased, stochastic

estimate of the gradient, given by 1
|Ĩ|

∑
i∈Ĩ ∇fi(x) +∇g(x), where Ĩ is a uniformly random subset

of I, indexing a random batch of samples from the training set. This approach motivates the study
of stochastic dynamics for convex optimization. But despite an extensive literature on stochastic
gradient and mirror descent in discrete time, e.g. [Nemirovski et al., 2009], [Duchi et al., 2010], [Lan,
2012], [Johnson and Zhang, 2013], [Xiao and Zhang, 2014], and many others, few results are known
for stochastic mirror descent in continuous-time. To the best of our knowledge, the only published
results are by Raginsky and Bouvrie [2012] and Mertikopoulos and Staudigl [2016]. In its simplest
form, the stochastic gradient dynamics can be described by the (underdamped) Langevin equation

dX(t) = −∇f(X(t)) + σdB(t),

where B(t) denotes a standard Wiener process (Brownian motion). It has a long history in opti-
mization [Chiang et al., 1987], dating back to simulated annealing, and it is known to have a unique
invariant measure with density proportional to the Gibbs distribution e−

2f(x)
σ (see, e.g., [Pavliotis,

2014]). Langevin dynamics have recently played an important role in the analysis of sampling
methods [Dalalyan, 2017, Bubeck et al., 2015, Durmus and Moulines, 2016, Cheng and Bartlett,
2017, Eberle et al., 2017, Cheng et al., 2017], where f is taken to be proportional to the logarithm of a
target density. It has also been used to derive convergence rates for smooth, non-convex optimization
where the objective is dissipative [Raginsky et al., 2017].

For mirror descent dynamics, Raginsky and Bouvrie [2012] were the first to propose a stochastic
variant of the mirror descent ODE (1), given by the SDE:

SMD

{
dZ(t) = −∇f(X(t)) + σdB(t)

X(t) = ∇ψ∗(Z(t)),
(2)

where σ is a constant volatility. They argued that the function values f(X(t)) along sample trajecto-
ries do not converge to the minimum value of f due to the persistent noise, but the optimality gap
is bounded by a quantity proportional to σ2. They also proposed a method to reduce the variance
by simultaneously sampling multiple trajectories and linearly coupling them. Mertikopoulos and
Staudigl [2016] extended the analysis in some important directions: they replaced the constant σ with
a general volatility matrix σ(x, t) which can be space and time dependent, and studied two regimes:
the small noise limit (σ(x, t) vanishes at a O(1/

√
log t) rate), in which case they prove almost sure

convergence; and the persistent noise regime (σ(x, t) is uniformly bounded), in which case they define

1In statistical learning, one seeks to minimize the expected risk (with respect to the true, unknown data
distribution). A common approach is to minimize the empirical risk (observed on a given training set) then
bound the distance between empirical and expected risk. Here we only focus on the optimization part.
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a rectified variant of SMD, obtained by replacing the second equation by X(t) = ∇ψ∗(Z(t)/s(t)),
where 1/s(t) is a sensitivity parameter (intuitively, decreasing the sensitivity reduces the impact of
accumulated noise). In particular, they prove that with s(t) =

√
t, the expected function values con-

verge at a O(1/
√
t) rate. While these recent results paint a broad picture of mirror descent dynamics,

they leave many questions open: in particular, they do not provide estimates for convergence rates in
the vanishing noise limit, which is an important regime in machine learning applications, since one
can often control the variance of the gradient estimate, for example by gradually increasing the batch
size, as done by Xiao and Zhang [2014]. Besides, they do not study accelerated dynamics, and the
interaction between acceleration and noise remains unexplored in continuous time.

Our contributions In this paper, we answer many of the questions left open in previous works. We
formulate and study a family of stochastic accelerated mirror descent dynamics, and we characterize
the interaction between its different parameters: the volatility of the noise, the (primal and dual)
learning rates, and the sensitivity of the mirror map. More specifically:

• In Theorem 1, we give sufficient conditions for almost sure convergence of solution trajec-
tories to the set of minimizers X ?. In particular, we show that it is possible to guarantee
almost sure convergence even when the volatility grows unbounded asymptotically.

• In Theorem 2, we derive a bound on the expected function values. In particular, we can
prove that in the vanishing noise regime, acceleration (with appropriate averaging) achieves
a faster rate, see Corollary 2 and the discussion in Remark 3.

• In Theorem 3, we provide estimates of sample trajectory convergence rates.

The rest of the paper is organized as follows: We review the building blocks of our construction in
Section 2, then formulate the stochastic dynamics in Section 3, and prove two instrumental lemmas.
Section 4 is dedicated to the convergence results. We conclude with a brief discussion in Section 5.

2 Accelerated Mirror Descent Dynamics

2.1 Smooth mirror map

We start by reviewing some definitions and preliminaries. Let (E, ‖ · ‖), be a normed vector space,
and (E∗, ‖ · ‖∗) be its dual space equipped with the dual norm, and denote by 〈x, z〉 the pairing
between x ∈ E, z ∈ E∗. To simplify, both E and E∗ can be identified with Rn, but we make the
distinction for clarity. We say that a map F : E → E∗ is Lipschitz continuous on X ⊂ E with
constant L if for all x, x′ ∈ X , ‖F (x) − F (x′)‖∗ ≤ L‖x − x′‖. Let ψ : E → R ∪ {+∞} be a
convex function with effective domain X (i.e. X = {x ∈ E : ψ(x) <∞}). Its convex conjugate ψ∗
is defined on E∗ by ψ∗(z) = supx∈X 〈z, x〉 − ψ(x). One can show that if ψ is strongly convex, then
ψ∗ is differentiable on all of E∗, and its gradient∇ψ∗ is a Lipschitz function that maps E∗ to X (see
the supplementary material). This map is often called a mirror map [Nemirovsky and Yudin, 1983].
To give a concrete example, take ψ to be the squared Euclidean norm, ψ(x) = 1

2‖x‖22. Then one
can show ψ∗(z) = arg minx∈X ‖z − x‖22, and the mirror map reduces to the Euclidean projection
on X . For additional examples, see e.g. Banerjee et al. [2005]. We make the following assumptions
throughout the paper:

Assumption 1. X is closed, convex and compact, the set of minimizers X ? is contained in the
relative interior of X , ψ is non-negative (without loss of generality), ψ∗ is twice differentiable with a
Lipschitz gradient, and f is differentiable with a Lipschitz gradient. We denote by Lψ∗ the Lipschitz
constant of∇ψ∗, and by Lf the Lipschitz constant of∇f .

2.2 Averaging formulation of accelerated mirror descent

We start from the averaging formulation of Krichene et al. [2015], and include a sensitivity parameter
similar to Mertikopoulos and Staudigl [2016]. This results in the following ODE:

AMDη,a,s

{
ż(t) = −η(t)∇f(x(t))

ẋ(t) = a(t)(∇ψ∗(z(t)/s(t))− x(t)),
(3)
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with initial conditions2 (x(t0), z(t0)) = (x0, z0). The ODE system is parameterized by the following
functions, all assumed to be positive and continuous on [t0,∞) (see Figure 1 for an illustration):

• s(t) is a non-decreasing, inverse sensitivity parameter. As we will see, s(t) will be helpful
in the stochastic case in scaling the noise term, in order to reduce its impact.

• η(t) is a learning rate in the dual space.
• a(t) is an averaging rate in the primal space. Indeed, the second ODE in (3) can be

written in integral form as a weighted average of the mirror trajectory as follows: let
w(t) = e

∫ t
t0
a(τ)dτ (equivalently, a(t) = ẇ(t)

w(t) ), then the ODE is equivalent to w(t)ẋ(t) +

ẇ(t)x(t) = ẇ(t)∇ψ∗(z(t)/s(t)), and integrating and rearranging,

x(t) =
x(t0)w(t0) +

∫ t
t0
ẇ(τ)∇ψ∗(Z(τ)/s(τ))dτ

w(t)
.

There are other, different ways of formulating the accelerated dynamics: instead of two first-order
ODEs, one can write one second-order ODE (such as in Su et al. [2014], Wibisono et al. [2016]),
which has interesting interpretations related to Lagrangian dynamics. The averaging formulation
given in Equation (3) is better suited to our analysis.

2.3 Energy function

The analysis of continuous-time dynamics often relies on a Lyapunov argument (in reference to Lya-
punov [1892]): one starts by defining a non-negative energy function, then bounding its rate of
change along solution trajectories. This bound can then be used to prove convergence to the set of
minimizers X ?. We will consider a modified version of the energy function used in Krichene et al.
[2016]: given a positive, C1 function r(t), and a pair of optimal primal-dual points (x?, z?) such
that3 x? ∈ X ? and∇ψ∗(z?) = x?, let

L(x, z, t) = r(t)(f(x)− f(x?)) + s(t)Dψ?(z(t)/s(t), z?). (4)

Here, Dψ∗ is the Bregman divergence associated with ψ∗, defined by

Dψ∗(z
′, z) = ψ∗(z′)− ψ∗(z)− 〈∇ψ∗(z), z′ − z〉 , for all z, z′ ∈ E∗.

Then we can prove a bound on the time derivative of L along solution trajectories of AMDη,a,s,
given in the following proposition. To keep the equations compact, we will occasionally omit explicit
dependence on time, and write, e.g. η/r instead of η(t)/r(t).
Lemma 1. Suppose that a = η/r. Then under AMDη,η/r,s, for all t ≥ t0,

d

dt
L(x(t), z(t), t) ≤ (f(x(t))− f(x?))(ṙ(t)− η(t)) + ψ(x?)ṡ(t). (5)

Proof. We start by bounding the rate of change of the Bregman divergence term:
d

dt
s(t)Dψ∗(z(t)/s(t), z

?) = ṡDψ∗(z/s, z
?) + s

〈
∇ψ∗(z/s)−∇ψ∗(z?), ż/s− ṡz/s2

〉
= 〈∇ψ∗(z/s)− x?, ż〉+ ṡ(Dψ∗(z/s, z

?)− 〈∇ψ∗(z/s)−∇ψ∗(z?), z/s〉)
= 〈∇ψ∗(z/s)− x?, ż〉+ ṡ(ψ(x?)− ψ(∇ψ∗(z/s)))

≤ 〈∇ψ∗(z/s)− x?, ż〉+ ṡψ(x?),

where the third equality can be proved using the fact that ψ(x) + ψ∗(z) = 〈x, z〉 ⇔ x ∈ ∂ψ∗(z)⇔
z ∈ ∂ψ(x) (Theorem 23.5 in Rockafellar [1970]), and the last inequality follows from the assumption
that s is non-decreasing, and that ψ is non-negative. Using this expression, we can then compute

d

dt
L(x(t), z(t), t) ≤ ṙ(f(x)− f(x?)) + r 〈∇f(x), ẋ〉+ 〈∇ψ∗(z/s)− x?, ż〉+ ψ(x?)ṡ

= ṙ(f(x)− f(x?)) + r 〈∇f(x), ẋ〉+ 〈ẋ/a+ x− x?,−η∇f(x)〉+ ψ(x?)ṡ

≤ (f(x)− f(x?))(ṙ − η) + 〈∇f(x), ẋ〉 (r − η/a) + ψ(x?)ṡ,

2The initial conditions typically satisfy ∇ψ∗(z0) = x0 which ensures that the trajectory starts with zero
velocity, but this is not necessary in general.

3Such a z? exists whenever x? is in the relative interior of X (hence the condition X ? ⊂ relintX in
Assumption 1). The analysis can be extended to minimizers that are on the relative boundary by replacing the
Bregman divergence term in L by the Fenchel coupling defined by Mertikopoulos and Staudigl [2016].
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where we plugged in the expression of ż and ∇ψ∗(z/s) from AMDη,a,s in the second equality, and
used convexity of f in the last inequality. The assumption a = η/r ensures that the middle term
vanishes, which concludes the proof.

As a consequence of the previous proposition, we can prove the following convergence rate:
Corollary 1. Suppose that a = η/r and that η ≥ ṙ. Then under AMDη,η/r,s, for all t ≥ t0

f(x(t))− f(x?) ≤ ψ(x?)(s(t)− s(t0)) + L(x0, z0, t0)

r(t)
.

Proof. Starting from the bound (5), the first term is non-positive by the assumption that η ≥ ṙ.
Integrating, we have L(x(t), z(t), t)− L(x0, z0, t0) ≤ ψ(x?)(s(t)− s(t0)), thus,

f(x(t)− f(x?)) ≤ L(x(t), z(t), t)

r(t)
≤ ψ(x?)(s(t)− s(t0)) + L(x0, z0, t0)

r(t)
.

Remark 1. Corollary 1 can be interpreted as follows: given a desired convergence rate r(t), one
can choose parameters a, η, s that satisfy the conditions of the corollary (e.g. by first setting η = ṙ,
then choosing a = η/r). This defines an ODE, the solutions of which are guaranteed to converge at
the rate r(t). While the convergence rate can seemingly be arbitrary for continuous time dynamics,
discretizing the ODE does not always preserve the convergence rate. Wibisono et al. [2016], Wilson
et al. [2016] give sufficient conditions on the discretization scheme to preserve polynomial rates, for
example, a first-order discretization can preserve quadratic rates, and a higher-order discretization
(using cubic-regularized Newton updates) can preserve cubic rates.
Remark 2. As a special case, one can recover Nesterov’s ODE by taking r(t) = t2, η(t) = βt,
a(t) = β/t (i.e. w(t) = w(t0)(t/t0)β), and s(t) = 1 (see the supplement for additional details). It
is worth observing that in this case, both the primal and dual rates η(t) and w(t) are increasing. A
different choice of parameters leads to dynamics similar to Nesterov’s but with different weights.

3 Stochastic dynamics

We now formulate the stochastic variant of accelerated mirror descent dynamics (SAMD). Intuitively,
we would like to replace the gradient term ∇f(x) in AMDη,a,s by a noisy gradient. Writing the
noisy dynamics as an Itô SDE [Øksendal, 2003], we consider the system

SAMDη,a,s

{
dZ(t) = −η(t)[∇f(X(t))dt+ σ(X(t), t)dB(t)]

dX(t) = a(t)[∇ψ∗(Z(t)/s(t))−X(t)]dt,
(6)

with initial condition (X(t0), Z(t0)) = (x0, z0) (we assume deterministic initial conditions for
simplicity). Here, B(t) ∈ Rn is a standard Wiener process with respect to a given filtered probability
space (Ω,F , {Ft}t≥t0 ,P), and σ : (x, t) 7→ σ(x, t) ∈ Rn×n is a volatility matrix assumed measur-
able and Lipschitz in x (uniformly in t), and continuous in t for all x. The drift term in SAMDη,a,s

is identical to the deterministic case, and the volatility term −η(t)σ(X(t), t)dB(t) represents the
noise in the gradient. In particular, we note that the learning rate η(t) multiplies σ(X(t), t)dB(t),
to capture the fact that the gradient noise is scaled by the learning rate η. This formulation is fairly
general, and does not assume, in particular, that the different components of the noise are independent,
as we can see in the quadratic covariation of the dual process Z(t):

d[Zi(t), Zj(t)] = η(t)2(σ(X(t), t)σ(X(t), t)T )i,jdt = η(t)2Σij(X(t), t)dt, (7)
where we defined the infinitesimal covariance matrix Σ(x, t) = σ(x, t)σ(x, t)T ∈ Rn×n. In our
analysis, we will focus on different noise regimes, which can be characterized using4

σ2
∗(t) = sup

x∈X
‖Σ(x, t)‖i, (8)

where ‖Σ‖i = sup‖z‖∗≤1 ‖Σz‖ is the induced matrix norm. Since Σ(x, t) is Lipschitz in x and
continuous in t, and X is compact, σ∗(t) is finite for all t, and continuous. Contrary to [Raginsky
and Bouvrie, 2012, Mertikopoulos and Staudigl, 2016], we do not assume that σ∗(t) is uniformly
bounded in t. We give an illustration of the stochastic dynamics in Figure 1 (see the supplement for
details).

4In our model, we focus on the time dependence of the volatility. Note that in some settings, the variance of
the gradient estimates scales with the squared norm of the gradient, see [Bottou et al., 2016] in the discrete case.
Thus one can consider a model where σ(x, t) scales with ‖∇f(x)‖∗, which may lead to different rates.
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X E∗

∇ψ∗

Z(t)
s(t)

X(t)

∇ψ∗
(
Z(t)
s(t)

)

Figure 1: Illustration of the SAMD dynamics. The dual variable Z(t) cumulates gradients. It is
scaled by the sensitivity 1/s(t) then mapped to the primal space via the mirror map, resulting in
∇ψ∗(Z/s) (dotted line). The primal variable is then a weighted average of the mirror trajectory.

Existence and uniqueness First, we give the following existence and uniqueness result:
Proposition 1. For all T > t0, SAMDη,a,s has a unique (up to redefinition on a P-null set) solution
(X(t), Z(t)) continuous on [0, T ], with the property that (X(t), Z(t)) is adapted to the filtration
{Ft}, and

∫ T
t0
‖X(t)‖2dt,

∫ T
t0
‖Z(t)‖2∗dt have finite expectations.

Proof. By assumption, ∇ψ∗ and ∇f are Lipschitz continuous, thus the function (x, z) 7→
(−η(t)∇f(x), a(t)[∇ψ∗(z/s(t)) − x]) is Lipschitz on [t0, T ] (since a, η, s are positive continu-
ous). Additionally, the function x 7→ σ(x, t) is also Lipschitz. Therefore, we can invoke the existence
and uniqueness theroem for stochastic differential equations [Øksendal, 2003, Theorem 5.2.1].

Since T is arbitrary, we can conclude that there exists a unique continuous solution on [t0,∞).

Energy decay Next, in order to analyze the convergence properties of the solution trajectories
(X(t), Z(t)), we will need to bound the time-derivative of the energy function L.
Lemma 2. Suppose that the primal rate a = η/r, and let (X(t), Z(t)) be the unique solution to
SAMDη,η/r,s. Then for all t ≥ t0,

dL(X(t), Z(t), t) ≤
[
(f(X(t))− f(x?))(ṙ(t)− η(t)) + ψ(x?)ṡ(t) +

nLψ∗

2

η2(t)σ2
∗(t)

s(t)

]
dt+〈V (t), dB(t)〉 ,

where V (t) is the continuous process given by

V (t) = −η(t)σ(X(t), t)T (∇ψ∗(Z(t)/s(t))−∇ψ∗(z?)). (9)

Proof. By definition of the energy function L, ∇xL(x, z, t) = r(t)∇f(x) and ∇zL(x, z, t) =
∇ψ∗(z/s(t))−∇ψ∗(z?), which are Lipschitz continuous in (x, z) (uniformly in t on any bounded
interval, since s, r are continuous positive functions of t). Thus by the Itô formula for functions with
Lipschitz continuous gradients [Errami et al., 2002], we have

dL = ∂tLdt+ 〈∇xL, dX〉+ 〈∇zL, dZ〉+
1

2
tr
(
ησT∇2

zzLση
)
dt

= ∂tLdt+ 〈∇xL, dX〉+ 〈∇zL,−η∇f(X)〉 dt+ 〈∇zL,−ησdB〉+
η2

2
tr
(
Σ∇2

zzL
)
dt.

The first three terms correspond exactly to the deterministic case, and we can bound them by (5) from
Lemma 1. The last two terms are due to the stochastic noise, and consist of a volatility term

−η 〈∇zL(X,Z, t), σdB〉 = −η 〈∇ψ∗(Z/s)−∇ψ∗(z?), σdB〉 = 〈V, dB〉 ,
and the Itô correction term

η2

2
tr
(
Σ(X, t)∇2

zzL(X,Z, t)
)
dt =

η2

2s
tr
(
Σ(X, t)∇2ψ∗(Z/s)

)
dt.
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We can bound the last term using the fact that ∇ψ∗ is, by assumption, Lψ∗-Lipschitz, and the
definition (8) of σ∗: for all x ∈ E, z ∈ E∗, and t ≥ t0, tr(Σ(x, t)∇2ψ∗(z)) ≤ nLψ∗σ

2
∗(t).

Combining the previous inequalities, we obtain the desired bound.

Integrating the bound of Lemma 2 will allow us to bound changes in energy. This bound will involve
the Itô martingale term

∫ t
t0
〈V (τ), dB(τ)〉, and in order to control this term, we give, in the following

lemma, an asymptotic envelope (a consequence of the law of the iterated logarithm).

Lemma 3. Let b(t) =
∫ t
t0
η2(τ)σ2

∗(τ)dτ . Then∫ t

t0

〈V (τ), dB(τ)〉 = O(
√
b(t) log log b(t)) a.s. as t→∞. (10)

Proof. Let us denote the Itô martingale by V(t) =
∫ t
t0
〈V (τ), dB(τ)〉 =

∑n
i=1

∫ t
t0
Vi(τ)dBi(τ), and

its quadratic variation by β(t) = [V(t),V(t)]. By definition of V , we have

dβ =

n∑
i=1

n∑
j=1

ViVjd[Bi, Bj ] =

n∑
i=1

V 2
i dt = 〈V, V 〉 dt.

By the Dambis-Dubins-Schwartz time change theorem (e.g. Corollary 8.5.4 in [Øksendal, 2003]),
there exists a Wiener process B̂ such that

V(t) = B̂(β(t)). (11)

We now proceed to bound β(t). Using the expression (9) of V , we have 〈V, V 〉 =
η2(t)∆T (t)Σ(X, t)∆(t), where ∆(t) = ∇ψ∗(Z(t)/s(t))−∇ψ∗(z?). Since the mirror map has val-
ues in X and X is assumed compact, the diameter D = supx,x′∈X ‖x− x′‖ is finite, and ∆(t) ≤ D
for all t. Thus, dβ(t) ≤ D2η(t)2σ2

∗(t)dt, and integrating,

β(t) ≤ D2b(t) a.s. (12)

Since β(t) is a non-decreasing process, two cases are possible: if limt→∞ β(t) is finite, then
lim supt→∞ |V(t)| is a.s. finite and the result follows immediately. If limt→∞ β(t) =∞, then

lim sup
t→∞

V(t)√
b(t) log log b(t)

≤ lim sup
t→∞

B̂(β(t))√
β(t)
D2 log log β(t)

D2

= D
√

2 a.s.

where the inequality combines (11) and (12), and the equality is by the law of the iterated logarithm.

4 Convergence results

Equipped with Lemma 2 and Lemma 3, which bound, respectively, the rate of change of the energy
and the asymptotic growth of the martingale term, we are now ready to prove our convergence results.

Theorem 1. Suppose that η(t)σ∗(t) = o(1/
√

log t), and that
∫ t
t0
η(τ)dτ dominates b(t) and√

b(t) log log b(t) (where b(t) =
∫ t
t0
η2(τ)σ2

∗(τ)dτ as defined in Lemma 3). Consider SAMD

dynamics with r = s = 1. Let (X(t), Z(t)) be the unique continuous solution of SAMDη,η,1. Then

lim
t→∞

f(X(t))− f(x?) = 0 a.s.

Proof sketch. We give a sketch of the proof here (the full argument is deferred to the supplement).

i) The first step is to prove that under the conditions of the theorem, the continuous solution of
SAMDη,η,1, (X(t), Z(t)), is an asymptotic pseudo trajectory (a notion defined and studied
by Benaïm and Hirsch [1996] and Benaïm [1999]) of the deterministic flow AMDη,η,1. The
rigorous definition is given in the supplementary material, but intuitively, this means that
for large enough times, the sample paths of the process (X(t), Z(t)) get arbitrarily close to
(x(t), z(t)), the solution trajectories of the deterministic dynamics.
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ii) The second step is to show that under the deterministic flow, the energy L decreases enough for
large enough times.

iii) The third step is to prove that under the stochastic process, f(X(t)) cannot stay bounded away
from f(x?) for all t. Note that under the conditions of the theorem, integrating the bound of
Lemma 2, and using the asymptotic envelope of Lemma 3, gives

L(X(t), Z(t), t)−L(x0, z0, t0) ≤ −
∫ t

t0

(f(X(τ))−f(x?))η(τ)dτ+O(b(t))+O(
√
b(t) log log b(t)),

and if say f(X(t))− f(x?) ≥ c > 0 for all t, then the first term dominates the bound, and the
energy would decrease to −∞, a contradiction.

Combining these steps, we argue that f(X(t)) eventually becomes close to f(x?) by (iii), then stays
close by virtue of (i) and (ii).

The result of Theorem 1 makes it possible to guarantee almost sure convergence (albeit without
guaranteeing a convergence rate) when the noise is persistent (σ∗(t) is constant, or even increas-
ing). To give a concrete example, suppose σ∗(t) = O(tα) (with α < 1

2 but can be positive), and
let η(t) = t−α−

1
2 . Then η(t)σ∗(t) = O(t−

1
2 ),
∫ t
t0
η(τ)dτ = Ω(t−α+

1
2 ), b(t) = O(log t), and√

b(t) log log b(t) = O(
√

log t log log log t), and the conditions of the theorem are satisfied. There-
fore, with the appropriate choice of learning rate η(t) (and the corresponding averaging in the primal
space given by a(t) = η(t)), one can guarantee almost sure convergence.

Next, we derive explicit bounds on convergence rates. We start by bounding expected function values.
Theorem 2. Suppose that a = η/r and η ≥ ṙ. Let (X(t), Z(t)) be the unique continuous solution
to SAMDη,η/r,s. Then for all t ≥ t0,

E[f(X(t))]− f(x?) ≤
L(x0, z0, t0) + ψ(x?)(s(t)− s(t0)) +

nLψ∗

2

∫ t
t0

η2(τ)σ2
∗(τ)

s(τ) dτ

r(t)
.

Proof. Integrating the bound of Lemma 2, and using the fact that (f(X(t))− f(x?))(ṙ − η) ≤ 0 by
assumption on η, we have

L(X(t), Z(t), t)−L(x0, z0, t0) ≤ ψ(x?)(s(t)− s(t0)) +
nLψ∗

2

∫ t

t0

η2(τ)σ2
∗(τ)

s(τ)
dτ +

∫ t

t0

〈V (τ), dB(τ)〉 ,

(13)
Taking expectations, the last term vanishes since it is an Itô martingale, and we conclude by observing
that E[f(X(t))]− f(x?) ≤ E[L(X(t), Z(t), t)]/r(t).
To give a concrete example, suppose that σ∗(t) = O(tα) is given, and let r(t) = tβ and s(t) = tγ ,
β, γ > 0. To simplify, we will take η(t) = ṙ(t) = βtβ−1. Then the bound of Theorem 2 shows that
E[f(X(t))] − f(x?) = O(tγ−β + tβ+2α−γ−1). To minimize the asymptotic rate, we can choose
γ − β = β + 2α− γ − 1, i.e. β + α− γ − 1

2 = 0, and the resulting rate is O(tα−
1
2 ). In particular,

we have:
Corollary 2. Suppose that σ∗(t) = O(tα), α < 1

2 . Then with η(t) = (1− α)t−α, a(t) = 1−α
t , and

s(t) = t
1
2 , we have E[f(X(t))]− f(x?) = O(tα−

1
2 ).

Remark 3. Corollary 2 can be interpreted as follows: Given a polynomial bound σ∗(t) = O(tα) on
the volatility of the noise process, one can adapt the choice of primal and dual averaging rates (a(t)

and η(t)), which leads to an O(tα−
1
2 ) convergence rate.

- In the persistent noise regime (α = 0), the dynamics use a constant η, and result in a O(1/
√
t)

rate. This rate is similar to the rectified dynamics proposed by Mertikopoulos and Staudigl
[2016], but while they show convergence of the ergodic average X̃(t) = 1

t

∫ t
0
X(τ)dτ , we can

show convergence of the original process X(t) under acceleration.
- In the vanishing noise regime (α < 0), we can take advantage of the decreasing volatility by

making η(t) increasing. With the appropriate averaging rate a(t), this leads to the improved
rate O(tα−

1
2 ). It is worth observing here that when α ≥ − 1

2 , the same rate can be obtained
for the ergodic average, without acceleration: one can show that the rectified SMD with
s(t) = tmax(0,α+ 1

2 ) achieves a O(tmax(α− 1
2 ,−1)). However for α < − 1

2 , acceleration improves
the rate from O(t−1) to O(tα−

1
2 ).
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- In the increasing noise regime (α > 0), as long as the volatility does not increase too fast
(α < 1

2 ), one can still guarantee convergence by decreasing η(t) with the appropriate rate.

Finally, we give an estimate of the asymptotic convergence rate along solution trajectories.
Theorem 3. Suppose that a = η/r and η ≥ ṙ. Let (X(t), Z(t)) be the unique continuous solution
to SAMDη,η/r,s. Then

f(X(t))− f(x?) = O

s(t) + n
∫ t
t0

η2(τ)σ2
∗(τ)

s(τ) +
√
b(t) log log b(t)

r(t)

 a.s. as t→∞,

where b(t) =
∫ t
t0
η2(τ)σ2

∗(τ)dτ .

Proof. Integrating the bound of Lemma 2 once again, we get inequality (13), where we can bound
the Itô martingale term

∫ t
t0
〈V (τ), dB(τ)〉 using Lemma 3. This concludes the proof.

Comparing the last bound to that of Theorem 2, we have the additional
√
b(t) log log b(t)/r(t) term

due to the envelope of the martingale term. This results in a slower a.s. convergence rate.

Suppose again that σ∗(t) = O(tα), and that r(t) = tβ and η(t) = ṙ(t) = βtβ−1 to sim-
plify. Then b(t) =

∫ t
t0
η2(τ)σ2

∗(τ)dτ = O(t2β+2α−1), and the martingale term becomes

O(
√
b(t) log log b(t)/r(t)) = O(tα−

1
2

√
log log t). Remarkably, the asymptotic rate of sample

trajectories is, up to a
√

log log t factor, the same as the asymptotic rate in expectation; one should
observe, however, that the constant in the O notation is trajectory-dependent.
Corollary 3. Suppose that σ∗(t) = O(tα), α < 1

2 . Then with η(t) = (1− α)t−α, a(t) = 1−α
t , and

s(t) = t
1
2 , we have f(X(t))− f(x?) = O(tα−

1
2

√
log log t) a.s.

5 Conclusion

Starting from the averaging formulation of accelerated mirror descent in continuous-time, and
motivated by stochastic optimization, we formulated a stochastic variant and studied the resulting
SDE. We discussed the role played by each parameter: the dual learning rate η(t), the inverse
sensitivity parameter s(t), and the noise covariation bound σ∗(t). Our results show that in the
persistent noise regime, thanks to averaging, it is possible to guarantee a.s. convergence, remarkably
even when σ∗(t) is increasing (as long as σ∗(t) = o(

√
t)). In the vanishing noise regime, adapting

the choice of η(t) to the rate of σ∗(t) (with the appropriate averaging) leads to improved convergence
rates, e.g. to O(tα−

1
2 ) in expectation and O(tα−

1
2

√
log log t) almost surely, when σ∗(t) = O(tα).

These asymptotic bounds in continuous-time can provide guidelines in setting the different parameters
of accelerated stochastic mirror descent.

It is also worth observing that in the deterministic case, one can theoretically obtain arbitrarily fast
convergence, through a time change as observed by Wibisono et al. [2016] – a time-change would
simply result in using different weights η(t) and a(t); this can also be seen in Corollary 1, where the
rate r(t) can be arbitrarily fast. In the stochastic dynamics, such a time-change would also lead to
re-scaling the noise covariation, and does not lead to a faster rate. To some extent, adding the noise
prevents us from “artificially” accelerating convergence using a simple time-change.

Finally, we believe this continuous-time analysis can be extended in several directions. For instance,
it will be interesting to carry out a similar analysis for strongly convex functions, for which we expect
faster convergence rates.
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