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Abstract

We study accelerated descent dynamics for constrained convex optimization. This
dynamics can be described naturally as a coupling of a dual variable accumulating
gradients at a given rate 7)(t), and a primal variable obtained as the weighted average
of the mirrored dual trajectory, with weights w(¢). Using a Lyapunov argument,
we give sufficient conditions on 7 and w to achieve a desired convergence rate. As
an example, we show that the replicator dynamics (an example of mirror descent
on the simplex) can be accelerated using a simple averaging scheme.

We then propose an adaptive averaging heuristic which adaptively computes the
weights to speed up the decrease of the Lyapunov function. We provide guarantees
on adaptive averaging in continuous-time, and give numerical experiments in
discrete-time to compare it with existing heuristics, such as adaptive restarting. The
experiments indicate that adaptive averaging performs at least as well as adaptive
restarting, with significant improvements in some cases.

1 Introduction

We study the problem of minimizing a convex function f over a feasible set X, a closed convex subset
of £ = R™. We will assume that f is differentiable, that its gradient V f is a Lipschitz function with
Lipschitz constant L, and that the set of minimizers S = argmin,c » f(z) is non-empty. We will
focus on the study of continuous-time, first-order dynamics for optimization. First-order methods
have seen a resurgence of interest due to the significant increase in both size and dimensionality of the
data sets typically encountered in machine learning and other applications, which makes higher-order
methods computationally intractable in most cases. Continuous-time dynamics for optimization have
been studied for a long time, e.g. [4, |6} 3], and more recently [16} [1}[7,[19]], in which a connection
is made between Nesterov’s accelerated methods [12}[10] and a family of continuous-time ODEs.
Many optimization algorithms can be interpreted as a discretization of a continuous-time process,
and studying the continuous-time dynamics is useful for many reasons: The analysis is often simpler
in continuous-time, it can help guide the design and analysis of new algorithms, and it provides
intuition and insight into the discrete process. For example, Su et al. show in [[16] that Nesterov’s
original method [12] is a discretization of a second-order ODE, and use this interpretation to propose
a restarting heuristic which empirically speeds up the convergence. Krichene et al. [7]] generalize
this approach to the proximal version of Nesterov’s method [10]] which applies to constrained convex
problems. They show that the continuous-time ODE can be interpreted as coupled dynamics of a
dual variable Z(t) which evolves in the dual space E*, and a primal variable X (¢) which is obtained
as the weighted average of a non-linear transformation of the dual trajectory. More precisely,

Z(t) = — 1V f(X(2))

JErm vyt (Z())dr
X() = WT

X(0) = Vo (2(0)) = 2o,

where r > 2 is a fixed parameter, the initial condition x is a point in the feasible set X', and V¢ * is
a Lipschitz function that maps from the dual space E* to the feasible set X, and is usually referred to
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as the mirror map (such a function can be constructed using standard results from convex analysis, by
taking the convex conjugate of a strongly convex function ¥ with domain X’; see the supplementary
material for a brief review of the definition and basic properties of mirror maps). Using a Lyapunov
argument, they show that the solution trajectories of this ODE exhibit a quadratic convergence rate,
i.e. if f* is the minimum of f over the feasible set, then f(X(t)) — f* < C/t* for a constant
C which depends on the initial conditions. This formalized an interesting connection between
acceleration and averaging, which had been observed in [3]] in the special case of unconstrained
quadratic minimization.

A natural question that arises is whether different averaging schemes can be used to achieve the same
rate, or perhaps faster rates. In this article, we provide a positive answer. We study a broad family of
Accelerated Mirror Descent (AMD) dynamics, given by

Z(t) = —n(t)V f(X (1))

X (to)W (¢ +'thV *(Z(r))dT
AMDy,, 3 x(p) = KWty w7 (2(7)

X (to) = VY (Z(to)) = o,

parameterized by two positive, continuous weight functions w and 7, where w is used in the averaging
and 7) determines the rate at which Z accumulates gradients. This is illustrated in Figure[I] In our
formulation we choose to initialize the ODE at t; > 0 instead of 0 (to guarantee existence and
uniqueness of a solution, as discussed in Section[2). We give a unified study of this ODE using an
appropriate Lyapunov function, given by

L(X, Z,t) = r(t)(f(X) = f7) + Dy (2, 27), 2

, with W(t) = [ w(r)dr o

where D+ is the Bregman divergence associated with 1 (a non-negative function defined on
E* x E*), and r(t) is a desired convergence rate (a non-negative function defined on R;). By
construction, L, is a non-negative function on X x E* x Ry. If t — L, (X(¢t), Z(t),t) is a non-
increasing function for all solution trajectories (X (¢), Z(t)), then L, is said to be a Lyapunov function
for the ODE, in reference to Aleksandr Mikhailovich Lyapunov [8]. We give in Theorem[2]a sufficient
condition on 77, w and r for L, to be a Lyapunov function for AMD,, ,, and show that under these
conditions, f(X(t)) converges to f* at the rate 1/r(t).

T ()T (X (1)

Figure 1: Illustration of AMD,, ,,. The dual variable Z (red dashed line) evolves in the dual space
E*, and accumulates negative gradients at a rate 7(t), and the primal variable X (¢) (green solid line)
is obtained by averaging the mirrored trajectory V¢*(Z (7)), 7 € [to, t] (green dashed line), with
weights w(7).

In Section[3] we give an equivalent formulation of AMD,, ,, written purely in the primal space. We
give several examples of these dynamics for simple constraint sets. In particular, when the feasible
set is the probability simplex, we derive an accelerated version of the replicator dynamics, an ODE
that plays an important role in evolutionary game theory [18] and viability theory [2].

Many heuristics have been developed to empirically speed up the convergence of accelerated methods.
Most of these heuristics consist in restarting the ODE (or the algorithm in discrete time) whenever a
simple condition is met. For example, a gradient restart heuristic is proposed in [13]], in which the
algorithm is restarted whenever the trajectory forms an acute angle with the gradient (which intuitively
indicates that the trajectory is not making progress), and a speed restarting heuristic is proposed
in [T6]], in which the ODE is restarted whenever the speed || X (t)| decreases (which intuitively
indicates that progress is slowing). These heuristics are known to empirically improve the speed of



convergence, but provide few guarantees. For example, the gradient restart in [[13]] is only studied
for unconstrained quadratic problems, and the speed restart in [[16] is only studied for unconstrained
strongly convex problems. In particular, it is not guaranteed (to our knowledge) that these heuristics
preserve the original convergence rate of the non-restarted method, when the objective function is not
strongly convex. In Section[d] we propose a new heuristic that provides such guarantees, and that is
based on a simple idea for adaptively computing the weights w(t) along the solution trajectories (thus
the weights become effectively a function of X and ¢, and not a predefined function of time). The
heuristic simply decreases the time derivative of the Lyapunov function L, (X (t), Z(t),t) whenever
possible. Thus it preserves the 1/r(t) convergence rate. We then give a discrete version of this
adaptive averaging scheme, and give numerical experiments in Section[5] in which we compare the
performance of these heuristics. The experiments indicate that our adaptive averaging compares
favorably to the restarting heuristics in all of the examples, and gives a significant improvement in
some cases. We conclude with a brief discussion in Section[6l

2 Accelerated mirror descent with generalized averaging

We start by giving an equivalent form of AMD,, ,, which we use to briefly discuss existence
and uniqueness of a solution. Writing the second equation as X (t)W(t) — X (to)W(tg) =

ftfo w(T)V*(Z(7))dr, then taking the time-derivative, we have
X(OW(t) + X (w(t) = w(t) Ve (Z(1)).
Thus the ODE is equivalent to
Z(t) = —n(t)V (X (2))
AMD,, X() = w0 (Vo* (Z(1) - X(1))
X(to) = VY™ (Z(to)) = wo.

The following theorem guarantees existence and uniqueness of the solution.

Theorem 1. Suppose that W (ty) > 0. Then AMD.,, ,, has a unique maximal solution (i.e. defined on
a maximal interval) (X (t), Z(t)) that is C*([tg, +00)). Furthermore, for all t > to, X (t) belongs
to the feasible set X.

Proof. Recall that, by assumption, V f and Vi* are both Lipschitz, and w, n are continuous. Fur-
thermore, W (¢) is non-decreasing and continuous, as the integral of a non-negative function, thus
w(t)/W(t) < w(t)/W (to). This guarantees that on any finite interval [to, T'), the functions 7(t) and

w(t) /W (t) are bounded. Therefore, —n(¢)V f(X) and Vu[’,((?) (Vy*(Z) — X) are Lipschitz functions
of (X, Z), uniformly in ¢ € [tg,T). By the Cauchy-Lipschitz theorem (e.g. Theorem 2.5 in [17]),
there exists a unique C'* solution defined on [to, T'). Since 7 is arbitrary, this defines a unique solution
on all of [tg, +00). Indeed, any two solutions defined on [tg, T71) and [tg, T%) with T, > T3 coincide
on [tg, T1). Finally, feasibility of the solution follows from the fact that X is convex and X (¢) is the

weighted average of points in X, specifically, 2 and the set {Vy*(Z(7)), T € [to, ]} O

Note that in general, it is important to initialize the ODE at ¢y and not 0, since W (0) = 0 and
w(t)/W (t) can diverge at 0, in which case one cannot apply the Cauchy-Lipschitz theorem. It is
possible however to prove existence and uniqueness with ¢y = 0 for some choices of w, by taking a
sequence of Lipschitz ODEs that approximate the original one, as is done in [[16]. This is a technicality
and does not matter for practical purposes, since the ODE can be initialized at any point in time.

We now move to our main result for this section. Suppose that 7 is an increasing, positive differentiable
function on [tg, +00), and consider the candidate Lyapunov function L, defined in (2)), where the
Bregman divergence term is given by

Dy (z,y) == 9" (2) =¢"(y) = (VY™ (y), 2 —v),

and z* is a point in the dual space such that Vi*(z*) = =* belongs to the set of minimizers S. Let
(X(t), Z(t)) be the unique maximal solution trajectory of AMD,, ,,.



Taking the time-derivative of ¢t — L, (X (t), Z(t),t) = r(t)(f(X(t)) — f*) + Dy~ (Z(t), z*), we
have

ZLAX®,2(0,8) = ' OFXD) = £ +7(0) (VAX D), X)) + (20, V" (2(8) = V¥"(="))

=X W) = ) +r0) (TIE0), X)) + <*n(t)Vf(X(t))7 X(0) + %?X(t) - x>
e : n(OW (1
< (X)) = 00 = n®) + (VAX®), X (1)) (rof) - W) : 3

where we used the expressions for Z and Vi* (Z) from AMD!, , in the second equality, and
convexity of f in the last inequality. Equipped with this bound, it becomes straightforward to give
sufficient conditions for L, to be a Lyapunov function.

Theorem 2. Suppose that for all t € [ty, +00),
1. n(t) > r'(t) and
2. (VAX®), X(®) (r(n) - 192 <.
Then L, is a Lyapunov function for AMD,,, ,,, and for all t > to, f(X(t)) — f* < Lr(X(t0),Z(to).to)

- r(t)

Proof. The two conditions, combined with inequality (@), imply that S Lr(X(t),Z(t),t) <0, thus
L, is a Lyapunov function. Finally, since D~ is non-negative, and L 1s decreasing, we have
LT‘(X(t)7 Z(t)7 t) < LW'(X(t0)7 Z(t0)7 to)

r(t) - r(t) '

which proves the claim. O

fX®W) -1 <

Note that the second condition depends on the solution trajectory X (¢), and may be hard to check a
priori. However, we give one special case in which the condition trivially holds.

Corollary 1. Suppose that for all t € [ty, +00), n(t) = w‘(/[t,)é()t), and Vu[’,((tt)) > T((tt)) Then L, is a

Lyapunov function for AMD.,,, ,, and for all t > to, f(X(t)) — f* < w

Next, we describe a method to construct weight functions w, ) that satisfy the conditions of Corol-
lary (1} given a desired rate r. Of course, it suffices to construct w that satisfies 1;; > *-, then to

set n(t) = wéf,)(rt()t) We can reparameterize the weight function by writing W((?) = a(t). Then
integrating from ¢, to ¢, we have v ((tto)) = eftto “(T)dT, and
_ a(t) Jt a(rydr
w(t) = w(to)a(to)e 0 : )

Therefore the conditions of the corollary are satisfied whenever w(t) is of the form @) and a : R —
R is a continuous, positive function with a(t) > ((t)) Note that the expression of w is defined up
to the constant w(tg), which reflects the fact that the condition of the corollary is scale-invariant (if
the condition holds for a function w, then it holds for aw for all o > 0).

Example 1. Let r(t) = t2. Then r'(t)/r(t) = 2/t, and we can take a(t) = % with 5 > 2. Then

w(t) = a((f) Jig atmdr _ 58/—/;66 n(t/t0) = (t/t9)?~1 and n(t) = 71”‘(/{})&(;) = Bt, and we recover
the weighting scheme used in [7]].

Example 2. More generally, if r(t) = t?, then r'(t)/r(t) = p/t, and we can take a(t) = % with
B> p. Then w(t) = (t/to)?~1, and n(t) = t)r ) — gyp-1,

We also exhibit in the following a second energy function that is guaranteed to decrease under the
same conditions. This energy function, unlike the Lyapunov function L,., does not guarantee a
specific convergence rate. However, it captures a natural measure of energy in the system. To define
this energy function, we will use the following characterization of the inverse mirror map: By duality
of the subdifferentials (e.g. Theorem 23.5 in [14]), we have for a pair of convex conjugate functions 1)



and ¢* that z € 9¢*(«*) if and only if z* € 9y(x). To simplify the discussion, we will assume that
1 is also differentiable, so that (V4*)~! = V1 (this assumption can be relaxed). In what follows,
we will denote by X = Vi(X) and Z = V¢*(2).
Theorem 3. Let (X (t), Z(t)) be the unique maximal solution of AMD,, ,,, and let X = V)(X).
Consider the energy function
1 y

&@:f@U»+R5MNﬂWX®) )

Then if w, n satisfy condition (2) of Theorem[2} E, is a decreasing function of time.

Proof. To make the notation more concise, we omit the explicit dependence on time in this proof.
We have Dy« (Z,X) = ¢*(Z) — ¢*(X) — (X, Z — X ). Taking the time-derivative , we have

d v * ; * (v 5 y > s S

2Dy (2,X) = <V¢ (2), Z> - <W» (X),X> - <X, Z - X> - <X,Z - X>

=(ve'(2)- X, Z> —(%,7- X>
Using the second equation in AMD), . we have V¢*(Z) — X = %X, and <X,Z - X> =
a(Vy*(Z) - vy*(X), Z - X> > 0 by monotonicity of Vi*. Combining, we have
L Dy-(Z,X) <=2 <X, Vf(X)>, and we can finally bound the derivative of E,:
d

. 1d . ’ .
(1) = (VI(X),X) + 2D (2,X) = 5Dy (2, %)

<(vix)x)(1-1).

ar

Therefore condition (2) of Theoremimplies that L E,.(t) < 0. O

This energy function can be interpreted, loosely speaking, as the sum of a potential energy given by
f(X), and a kinetic energy given by %DW (Z,X): Indeed, when the problem is unconstrained,
then one can take ¢*(z) = 1|z||2, in which case V¢)* = V) = I, the identity, and Dy-(Z, X) =

: 2
1||Z — X||? = 1||Z 2, a quantity proportional to the kinetic energy.

3 Primal Representation and Example Dynamics

An equivalent primal representation can be obtained by rewriting the equations in terms of Z =
V*(Z) and its derivatives (Z is a primal variable that remains in X, since V¢* maps into X).
Taking the time derivative of Z(t) = Vy*(Z(t)), we have
Z(t) = V2 (Z() Z(t) = —n(t) V" o VH(Z(1))V (X (1)),
where V21)*(2) is the Hessian of 1* at 2, defined as V)* (2);; = %. Then using the averaging
expression for X, we can write AMD,, ,, in the following primal form
w0 W (to)+ me(r)dT)

avipg, {20 =100 o Tuz@) s (2
Z(to) = Xo.

6

A similar derivation can be made for the mirror descent ODE without acceleration, which can be
written as follows [[7] (see also the original derivation of Nemirovski and Yudin in Chapter 3 in [9])

Z(t) = —Vf(X(t))
MD{  X(t) = Vo' (Z(1))
X(to) = Xo9.
Note that this can be interpreted as a limit case of AMD,, ,, with (¢) = 1 and w(t) a Dirac function
at t. Taking the time derivative of X (t) = V*(Z(t)), we have X (t) = V2y*(Z(t))Z(t), which
leads to the primal form of the mirror descent ODE
MDY { X (1) = ~V*4" o V(X (1) V(X (2)

7
X(to) = Xo. ( )



The operator V2* o V) appears in both primal representations (6) and (7), and multiplies the
gradient of f. It can be thought of as a transformation of the gradient which ensures that the primal
trajectory remains in the feasible set, this is illustrated in the supplementary material. For some
choices of 1, V21)* o V) has a simple expression. We give two examples below.

We also observe that in its primal form, AMDﬁW is a generalization of the ODE family studied
in [T9], which can be written as £ V(X (t) + e *OX(t)) = WOV f(X(t)), for which
they prove the convergence rate O(e~?(*)). This corresponds to setting, in our notation, a(t) = e*(*),
7(t) = e’ and taking 7(t) = a(t)r(t) (which corresponds to the condition of Corollary [1}).

Positive-orthant-constrained dynamics Suppose that X" is the positive orthant R” , and consider
the negative entropy function ¢(z) = >, x; Inx;. Then its dual is ¢)*(z) = >, e* !, and we have
Vip(z); =1+ Inz; and V29*(2); ; = 5?6“’1, where 67 is 1if i = j and 0 otherwise. Thus for all
z € R, V2* o Vi(z) = diag(z). Therefore, the primal forms (7) and (6), reduce to, respectively,

{Vi,Xz' = -X;Vf(X); {Vi, Zi = —n() ZiV f(X);

X(0) =z Z(to) = 2o

where for the second ODE we write X compactly to denote the weighted average given by the second
equation of AMD,, ,,. When f is affine, the mirror descent ODE lead to Lotka-Volterra equation
which has applications in economics and ecology. For the mirror descent ODE, one can verify that
the solution remains in the positive orthant since X tends to 0 as X approaches the boundary of the

feasible set. Similarly for the accelerated version, Z tends to 0 as Z approaches the boundary, thus Z
remains feasible, and so does X by convexity.

Simplex-constrained dynamics: the replicator equation. Now suppose that X is the n-simplex,

X =A={z e R} :>", z; = 1}. Consider the distance-generating function ¢)(z) =

S @ilnz; + 6x(z), where dx(-) is the convex indicator function of the feasible set. Then its

conjugate is ¢*(z) = In (Y., €*'), defined on E*, and we have V¢)(z); = 1 + Inz;, Vip*(2); =

2, /% I §7e%i __efiefi PR 2,/ % R

and V29Y*(2);; = S SN Then it is simple to calculate V*¢* o Vi)(z);; =
6{@ ;T Y BV . .

S T (Zk mk)z = 51‘ x; — x;xj. Therefore, the primal forms and @ reduce to, respectively,
Vi, Xi+ Xi (Vf(X)i = (X, Vf(X)) =0 Vi, Zi + (0 Z: (VF(X)i = (Z,V (X)) =0
X(0) =m0 Z(0) = 0.

The first ODE is known as the replicator dynamics [15]], and has many applications in evolutionary
game theory [[L8] and viability theory [2], among others. See the supplementary material for additional
discussion on the interpretation and applications of the replicator dynamics. This example shows that
the replicator dynamics can be accelerated simply by performing the original replicator update on the
variable Z, in which (i) the gradient of the objective function is scaled by 7(¢) at time ¢, and (ii) the
gradient is evaluated at X (¢), the weighted average of the Z trajectory.

e”i

4 Adaptive Averaging Heuristic

In this section, we propose an adaptive averaging heuristic for adaptively computing the weights

w. Note that in Corollary |1} we simply set a(t) = % so that <Vf(X(t)), X(t)> (r(t) - %) is

identically zero (thus trivially satisfying condition (2) of Theorem[2)). However, from the bound (3),
if this term is negative, then this helps further decrease the Lyapunov function L, (as well as the
energy function E,.). A simple strategy is then to adaptively choose a(t) as follows

alt) =24 it (VAX @) X(0) >0,
a(t) > % otherwise.

If we further have 7(t) > 7/(t), then the conditions of Theorem [2]and Theorem [3]are satisfied, which

guarantee that L, is a Lyapunov function and that the energy F), decreases. In particular, such a

heuristic would preserve the convergence rate r(t) by Theorem



We now propose a discrete version of the heuristic when 7(t) = t2. We consider the quadratic rate
in particular since in this case the discretization proposed by [[7] preserves the quadratic rate, and
corresponds to a first-order accelerated method’| for which many heuristics have been developed,
such as the restarting heuristics [[13} [16] discussed in the introduction. To satisfy condition (1) of
Theorem we choose 7(t) = Ot with 8 > 2. Note that in this case, % = g, and one simple
discretization of our heuristic (under the correspondance ¢ = k+/s, for a step size s) is to set
ar = ki\/g when <Vf(x(k)),x(k+1) — x(’“)> > 0, and keep ar = ay—1 otherwise. This results in
a non-increasing sequence ag. It is worth observing that a constant a(t) over an interval [y, ts]
corresponds to an exponential increase in the weight w(t) over the same interval, by equation (@),
while a(t) = £ corresponds to the polynomial increase w(t) = (¢/to)" 1.

We adapt the discretization of the ODE given in [7]. The resulting discrete method is given in
Algorithmm where 9* is assumed to be L«-smooth, R is a regularizer assumed to be £-strongly
convex and L g-smooth, and s,y are step sizes that satisfy the conditions v > Lg Ly« and s < 2‘%;
the details of the discretization are deferred to the supplementary material.

Algorithm 1 Accelerated mirror descent with adaptive averaging

1: Initialize #° = 2o, 5@ = 29, a1 = &

Vs
2: for k € Ndo
30 20D = argmin, Bks <Vf(x(k)), é> + Dy (z,2).

4: D = argming vs <Vf(x<k)), £> + R(z,z®)
50 @D = A (1= A )@Y, with A = 5
6 if <Vf(3c(k)), 20D x<k)> > 0 then
: __=
e N
8: else
9: ak41 = Ag.

S Numerical Experiments

In this section, we compare our adaptive averaging heuristic (in its discrete version given in Al-
gorithm [T to existing restarting heuristics. We consider simplex-constrained problems and take
the distance generating function 1) to be the entropy function, so that the resulting algorithm is a
discretization of the accelerated replicator ODE studied in Section[3] We perform the experiments in
R3 so that we can visualize the solution trajectories (the supplementary material contains additional
experiments in higher dimension). We consider different objective functions: A strongly convex
quadratic given by f(z) = (z — s)T A(x — s) for a positive definite matrix A, a weakly convex
quadratic, and a linear function f(z) = ¢ 2. We compare the following methods:

1. The original accelerated mirror descent method (in which the weights follow a predetermined
schedule given by a, = &),

2. Our adaptive averaging, in which ay, is computed adaptively following Section 4]

3. The gradient restarting heuristic in [[13]], in which the algorithm is restarted from the current
point whenever (V f(z(*)), z(k+1) — 2(0)) > 0,

4. The speed restarting heuristic in [16], in which the algorithm is restarted from the current
point whenever |2+ — z(®)|| < [|z(F) — z(k=1),

The results are shown in Figure 2] Each subfigure is divided into four plots: Clockwise from the top
left, we show the value of the objective function, the trajectory on the simplex, the value of the energy
function F,. and the value of the Lyapunov function L,..

The experiments show that adaptive averaging compares favorably to the restarting heuristics on
all these examples, with a significant improvement in the strongly convex case. Additionally, the

?For faster rates r(t) = t?, p > 2, it is possible to discretize the ODE and preserve the convergence rate, as
proposed by Wibisono et al. [19]], however this discretization results in a higher-order method such as Nesterov’s
cubic accelerated Newton method [[L1].



experiments confirm that under the adaptive averaging heuristic, the Lyapunov function is decreasing.
This is not the case for the restarting heuristics as can be seen on the weakly convex example. It is
interesting to observe, however, that the energy function E, is non-increasing for all the methods
in our experiments. If we interpret the energy as the sum of a potential and a kinetic term, then
this could be explained intuitively by the fact that restarting preserves the potential energy and can
only decrease the kinetic energy. It is also worth observing that even though the Lyapunov function
is non-decreasing, it will not necessarily converge to 0 when there is more than one minimizer (in
particular, its limit will depend on the choice of z* in the definition of L,.).

Finally, we observe that the methods have a different qualitative behavior: The original accelerated
method typically exhibits oscillations around the set of minimizers. The heuristics alleviate these
oscillations in different ways: Intuitively, the adaptive averaging acts by increasing the weights on
portions of the trajectory which make the most progress, while the restarting heuristics reset the
velocity of the solution trajectory to zero whenever the algorithm detects that the trajectory is moving
in a bad direction. The speed restarting heuristic seems to be more conservative in that it restarts
more frequently.
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Figure 2: Examples of accelerated descent with adaptive averaging and restarting.
6 Conclusion

Motivated by the averaging formulation of accelerated mirror descent, we studied a family of ODEs
with a generalized averaging scheme, and gave simple sufficient conditions on the weight functions
to guarantee a given convergence rate in continuous time. We showed as an example how the
replicator ODE can be accelerated by averaging. Our adaptive averaging heuristic preserves the
convergence rate in continuous time (since it preserves the Lyapunov function), and its discrete
version seems to perform at least as well as other heuristics for first-order accelerated methods, and
in some cases considerably better. This encourages further investigation into the performance of this
adaptive averaging, both theoretically (by attempting to prove faster rates, e.g. for strongly convex
functions), and numerically, by testing it on other methods, such as the higher-order accelerated
methods proposed in [[19]].
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