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1 Mirror operator Vuy*

In this section, we discuss properties of distance generating functions and their subdif-
ferentials. Let 1 be a proper, closed, convex function, and suppose that X is the effective
domain of ¢ (i.e. X = {z € R": ¢(x) < 0o}). The subdifferential of ¢ at € X is

I(x) ={z € E":¢(y) = () = (z,y —x) > 0 Vy € X}.

The domain of 9 is {z € X : Y(x) # 0}.
The conjugate of ¥ is defined as

Y*(z) = sup (z,x) — ¥(z).

reX

By Theorem 12.2 in [Rockafellar| [1970], * is convex, closed and proper. By Theorem
23.5, we have that 9y* and 0 are inverses of each other (in the set valued sense), and

O™ (z) = argmax (x, z) — (),
rEX

so 0Y* naturally maps into X. The following lemma gives sufficient conditions for this
mirror operator to be defined on the entire dual space E*, and single valued (in other
words, ©* is finite and differentiable everywhere).

Proposition 1. Let ¢ and its conjugate 1* be closed proper convex functions, such that
the effective domain of 1 is X. Suppose that

(i) ¥ is co-finite, that is, the epigraph of v contains no non-vertical half-lines. (An
equivalent condition is that the recession function of ¥ is the indicator of 0.)

(ii) v is essentially strictly convez, that is, ¢ is strictly conver on any convexr subset

of the domain of .

Then ¥* is finite and differentiable on E*, and Vi* maps E* into X wvia the following
expression: for z € B,

V™ (z) = argmax (z, ) — ¥(x).
rEX
Proof. Since 1 is cofinite, by Theorem 13.3 in [Rockafellar| [1970], ¢* is finite everywhere
(domain of ¢* is E* = R™). And since 1) is essentially strongly convex, by Theorem 25.3
in [Rockafellar| [1970], ©* is essentially smooth, and hence differentiable on the interior
of its domain, which is all of E*. O

Note that v is not necessarily differentiable: consider in particular the case where its
domain X is contained in a hyperplane (i.e. has affine dimension at most n — 1), then
1 is, in fact, nowhere differentiable. As a consequence, the inverse mapping of V™,
(Vp*)~1 = 91, is not always single-valued.



2 Proof of Lemma 1]

Let us rewrite the smoothed accelerated mirror descent ODE system

Z=-1Vf(X)
XZM(V#’(Z)*X) (1)
X (0) = xo, Z(0) = 2o with Vip(zg) = xo.

By the Cauchy-Lipschitz theorem, there exists a unique solution (Xjs, Zs) defined on
[0, tmax ), and the solution is C!. Define, for ¢ > 0,

Z
Ag(t): sup || 5(“’)”
u€([0,t] U
X —
Bg(t): sup H 5(”) LE()“
u€|0,t] U
Cs(t) = sup [ Xs(u)|
u€|0,t]

These quantities are finite for the following reasons:
. M = || X;5(0)|| + o(1) near 0, thus Bj is finite.
e || X5]|| is continuous thus bounded on [0, ], thus Cj is finite.
e Finiteness of Ay is a consequence of the following lemma.

To prove Lemma |1} we first need the auxiliary lemma below, that provides bounds
on As, Bs, Cs.

Lemma 3. For all t,

rAs(t) < ||V f(wo)|l + LstBs(t), (2)
Bs(t) < 2o A0, (3)
Cs(t) <r (togw* As(t) + Bg(t)) . (4)

Proof. By definition of As and Bs, we have

t . t t2
125 =20 < [ 12s0)1dv < Aste) [ v = Taste), 9
IX5(6) = ol < ¢B5(t).

Now, from the first equation in @, we have for all t < g

125

P2 (s @)
< 191 wo) | + V£ (X5(0)) = Vf (o)
<95 Go)ll + Ly Xs(t) - o V/ is Ly-Lipschitz
<[V (o)l + LytBs(t).

Thus,
rAs(t) < |V f(2o)|| + LstBs(t).

From the second equation in @, we have for all t < 6,

¥ (X5 + 5(X5 —w0)) = 5o (Vi (Zs) = Vi (z0).
& ((Xslt) — wo)e™ ) = e (Ve (Za(1)) ~ Vo (20)),



thus integrating

t

]

(X5(t) — zp)e = © / €% (V4" (Z5(5)) — V" (20))ds

and taking norms

t

IX5(6) = ol < § [ 1997 (Z5(5)) ~ T4 o)l
0
Lw*’l’

t
<250 [ )25(5) - aolds
0

Lo t .2
<2 T/ ¥ As(t)ds
0 2

V)™ is Ly+-Lipschitz

by

d
3
_ L,g*rAd(t)%
< Lw*rtQ As().
6
For t >,
1 (Ko 5 (X5 —20) ) = 1t (VU (Z5) = Vo' ()
1.e.

dt
thus integrating

L (Xa(t) — w0)) = 117 (V" (Zs) — Vo (20)),

£ (X5 (t) — 20) = /0 P (V6 (Zs(s)) — Vo™ (20))ds

and taking norms

1X5(0) =0l < 5 [ 1907 (Zo(s)) = Vo)

Ly«r ¢
<27 [1)Z4() - z0lds
t Jo
L1 b g2
< —As(t)d
= /o B s(t)ds
Lys«r t3
= A0
 Ly-rt? As(t)
S —
Dividing by ¢ and taking the supremum, we have
Ly-rt
Bs(t) < ¢6 As(t).

V™ is Ly+-Lipschitz

by

Finally, to bound Cjy, we have from the second equation in @, for all t < tg,

X5l = oy |99 (Zs(0) = X5(0)]

r

IN
=

ax(0,t)
ax(0, 1) (Ly-

IN

=

r

< ax(0.1) (ng*A‘S(t) + tB5(t))

< (B0 + i)

which conclude the proof.

—— (V¥ (Z5(t)) = V¢ (20)l| + | X5(t) — 2oll)

Zs(t) = zoll + [ X5(t) — oll)



Proof of Lemmal[ll First, we show that As, Bs, Cs are bounded on [0, ¢, uniformly in
d.
Combining ([2)) and ( . we have

Bilt) = < rAstt) < IV f(eo)l + LytBafo)

thus 6
Byt (W - Lft) < IV (o)l

And when t < o Lf?f«/)* ,

Ly
6 _ Lt > 0 < — a>
Ly-t Ly

_ /2 1 _ 1
and fora—\/;, & — o= 7z, thus setting

we have for all t < ¢, ﬁ — Lt > ﬁ/LLTf*’ and so

By (2),
Aslto) <~ (IVF o)l + LytoB(to))
1

<! (IIVf(rco M+ Ly 9T ol )

= 219 5ol
By (4)), we have

toLw*
Cs(to) <r ( As(to) + Bé(%))

LiLy

(3+7’ |Vf Zo H“

To conclude, we have for all ¢ € [0, %]

2 Ly 3 Ly
Sr( 5 IV o)l + Lle(fCo)Il)

1Z5 ()] < toAs(to),
1X5(8)] < Cs(to),

which are bounded uniformly in §, thus the family is equi-Lipschitz-continuous on [0, o).
It also follows that it is uniformly bounded on the same interval. O



3 Proof of uniqueness of the solution

Proof of uniqueness. It suffices to prove uniqueness on an open neighborhood of 0, since
away from 0, uniqueness is guaranteed by the Cauchy-Lipschitz theorem.

Let (X, Z) and (X, Z) be two solutions of the ODE (f)), and let Az = Z — Z and
Ax = X — X. Then Ax, Ay are C', and we have

Ay =L (Vf(X) - V(X))

Ax = f?vqp* Z) - Vy*(Z) — Ax)
=0

t

(
Az(0) = Ax(0)

Let A(t) = supyg y M, and B(t) = supy , [[Ax||. Note that B(¢) is finite since Ay

u

is continuous on [0, ¢]. The finiteness of A(t) will be established below. We have

. t _ Lt Lyt
IAz@l = “IVAX ) = VA0 < =FlAx )] < ==B(0).
Dividing by ¢ and taking the supremum, we have
L
A() < ~LB(). (6)

Next, since AX—i—%AX =T (Vy*(Z) — VY*(Z)), we have Lt"Ax = rt"=1 (Vy*(Z) — Vy*(2)).

t
Therefore, integrating and taking norms

t t
lAx @l < 7‘/ sV (Z(s)) — Vo (Z(s))ds < Ttr_l/ Ly~ [[Az(s)llds
0 0
t .2 . 42
< Lw*rt“lA(t)/ 5 g = Loert A0 A(t),
o 2 6

where we used the fact that Az (s)|| = || 5 Az(u)dul| < [ uA(t)du = A(t)%. Dividing
by t" and taking the supremum,
Lw* Tt2

B(t) < =

A(t). (7)

Combining (6)) and (7), we have A(t) < %MA@), which implies that A(t) = 0 for
t<, /ﬁ7 which in turn implies that B(¢) = 0. This concludes the proof. O



4 Proof of Lemma 2

We recall the accelerated mirror descent algorithm, the definition of the potential func-
tion, and the statement of the Lemma.

Algorithm 1 Accelerated mirror descent with distance generating functions * and ¢,
step size s, and parameter r > 3

1: Initialize @ = 2(©) = .

2: for k € Ndo
30 2D = 02 4 (1 - A)E™), with A\ = -2
4 Z —argming 52 (V). 2) + Dy (2,20) = Ty (Vp(2W) — 2V f(aHD))

o

FF D = argming s <Vf(x<k+l)), 57> + R(z, D)
6: end for

We consider the function
(k) (k) L (R) K28 ooy _ px (k)
EY =V (@, 2" k) = —(f(@") — f*) + rDy- (2", 2%).
Lemma 2. Ify> LgLy- and s < Qéﬁ, then for all k > 0,

(2k +1—kr)s

r

B _ B < (FEFD) = f).

In what follows, 1* is a distance generating function that is finite and differentiable
throughout E*, and V¢* maps E* into X, and is supposed to be L,+—Lipschitz in the
following sense: ||[V¢*(u) — Vp*(v)|| < Ly~ ||u—v]| for all u,v € E*. The dual function
1) has effective domain X but is not necessarily differentiable. We will need the following
lemmas:

Lemma 4. Let f be a convex function and suppose that V f is Ly-Lipschitz w.r.t. | -||.
Then for all x,2', xT,

fat) < f@) + (Vf(@),a® —a') + H|a™ —|?

Proof. Since V f is L¢-Lipschitz, we have

Fa*) < f@) + (V@) — )+ Lt —af?

and by convexity of f,
f@) = f(2) + (Vf(z),2" — =)

Summing the two inequalities, we obtain the result. O
Lemma 5. For all u,v,w
Dy (u,v) = Dy (w,v) = =Dy (w, u) + (VY (u) = VY™ (v),u — w)

Proof. By definition of the Bregman divergence, we have

Dy (u,v) — Dy« (w,v)

=97 (u) = 9" (v) = (VY™ (v),u —v) = (V" (w) = " (v) = (V™ (v), w —v))

=P (u) = ¢*(w) = (V™ (v),u —w)

== (@ (w) = ¢ (u) = (VY™ (u),w —u)) + (V" (u) = V" (v),u — w)

= =Dy (w,u) + (V" (u) = Vi (v), u — w)



Lemma 6. For all u,v € E*,

1
2Ly

= 01 < Dy (0) < Z2 = o2
where & = Vy*(u) and © = Vp*(v).
Proof. We have
Dy (u,v) = ¢ (u) = 9" (v) = (VY™ (v), u — v)
1
= / VW (v+tlu —v)) — Vip*(v),u — v) dt
0

1
< lw = o]« / [l* (v + t(u — v)) — Vp*(v)||dt by the Cauchy-Schwartz inequality
0

1
< Ly llu — v« / [lv+ t(u —v) — v||.dt since ¢ is Ly~ Lipschitz
0

1
u—v||? / tdt
0

which proves the second inequality. The first inequality will be proved by dualizing this
inequality. Fix v € E* and define

() = Dye () = " (u) = 0 (v) — (V& ()0~ ),
() = 22 u— o]

Then by the previous inequality, h(u) < d(u) for all u € E*, and taking duals, we have
h*(u*) > d*(u*) for all u*. We now derive the duals. Let o = ¢*(v). Then,

W™ (u”) = sup (u”, u) — h(u)
=sup {u”,u) = ¥"(u) + ¢7(v) + 0, u = v)
=9 (v) = (v,0) + sup (u” +0,u) =™ (u)
= 9" (v) = (v,0) + P(u” +0)

and
d" (u") = sup (u”, u) — d(u)
* L.y
= sup (u", u) — =" [lu v}

Ly
)= =5 lhwl?

= sup (u*,v + w
w

L«
(u*, 0) + sup (u*, w) — =2 |lw]|?
w 2

1
= (u*,v) + —||u*||?
(0, 0) + g |
where the last equality uses Cauchy-Schwartz. Therefore combining the two inequalities,

P*(v) = (v, 0" +0) + P(u* +7) > [Ju* ||

2Ly

In particular, for all u € E*, if we call @ = V¢*(u), and take u* = @ — ¥, then

¥ 0) = (0,3 + 90 2 g7l 7



and by Theorem 23.5 in Rockafellar, (a) = (u, @) — ¢*(a@), thus

* * ~ 1
V() =Y () = (@0 —w) 2 o7

[oElly

which proves the claim. O
Proof of Lemma[3 We start by bounding the difference in Bregman divergences
Dy- (z(kﬂ), 2*) — Dy (z(k), z")
= —Dy- (20, 2Dy 4 <Vw*(z(k+1)) Vap* (2%), 2+ — z(k)> By Lemma [

g—%uwﬂ <’“>||2+<z<k+l> z* ——Vf( ey >> by Lemma §
P>
(8)

Now using the step from z**1 to z**1 we have

1
£+ = arg min <Vf(x(k+1)), x> + —R(z, z+Y)
reFE Vs

with %RHx —y|? < R(z,y) < LTRHSL’ — y||>. Therefore, for any x, R(z,z*+tV) >
R(E*HD gD s (V f(aFFD), 21 — ). We can write

1 1
s(k+1) _ z(k) — — 5 (k+1) _ (k) (k1)) — & (k+1) _ ,.(k+1)
z Z " ()\kz +(1=X)Z x ) " (d x ) ,

where we have defined d**1) in the obvious way. Thus

(k+1) _ ~(k)||2

12
= d%+1 (’C+1)||2
5!
1 2
> R(dF+D) | g (k1)
- /\2 LR R )
> /\2 Ta ( (k+1) k+1))+ys <Vf( (k+1) ) (k1) —d(k+1)>>
R
Z (ﬁR |z (k+1) _ (k+1)H2 + s <vf(m(k+1))’3~c(k+1) _ gD (1- )\k)j(k)>) |
Thus
kLR” (kD) ~(’“)HQ klr =Bz (k+1) _x(k+1)||2
= 2r Ay k7Y
+ { By, Laown _ s 1= Mega0), (9)
r ’)\k "

Subtracting @ from ,
Dw* (Z(k—i-l)7 Z*) _ Dil}* (Z(k), Z*)

(k+1) _ 5(h)2 _ Mim(%l) _ kD)2

- ~
< -2 2r Ay
ks 1 11—
_ RS (k4+1)y x|+ ~(k+1) LT Ak (k)
+< TVf(x ), x+)\kx " z >,
where

1 kMiLr
= 2L 2ry



Defining D) = |#(*k+1) — (41|12 and DY = || 2:+D) — 2|2 we can rewrite the
last inequality as

Dﬂ)* (Z(k+1),Z*) o Dill* (Z(k),Z*)
ke k
— _akDékJFl) _ 7RD§]€+1) + 87 <—Vf($(k+1)),i‘(k+1) _ J)*>

2r Ay

1= A sk (k+1)y ~(k+1) _ ~(k)
" = (~VF@E)a )

By Lemma 4] we can bound the inner products as follows
- - _ - L
(3040 =30, v p(atD)) < £@0) — fE0D) + LD,
L
<i‘(k+1) _ Z‘*7 _Vf(x(k+l))> S f* _ f(j'j(k—l-l)) T %ng‘Fl)

Combining these inequalities, and using the fact that % =k we have

)
Dy (2#11,2%) — Dy (2™, 2%)

K? . . L k . N L
< oD 4 B2 (1) - ) 4 Hp )+ B2 (- paten) 4+ Hppen)

klrR . (k+1)
- 2E p
2r Ay 1
k2 ~ - k " -
= 2 (16 = 5@ + 2 (1 - £GEE)) - anDEY - DY,
where

k'éR Lfk2s Lfks

P = 2r A,y 92 2r

Finally, we obtain a bound on the difference E*+1) — (k)
B+ _ k)

= B D (000) oy B2 (30) - ) (Do (204, 2) = Dy (o), 27)

;
2k + 1
+¥

= 2@ ) - 1@

< (2k +1—kr)s

(@) = 1) = rap DY —r DY

For the desired inequality to hold, it suffices that ay, S > 0, i.e.

1 kLR S
2Ly 2(r+k)y ~
k(r+k)lr Lgk®s  Lyks >0
2r2y 2r2 2r — 7
i.e.
7 + 3 Lrly:
s< tr
Ly
So it is sufficient that
v > LgL s< tr
= LiRLy S
v Ly
which concludes the proof. O

(FGE) = )+ 1Dy (2540, 27) = Dy (:19, 7))



5 Bounding £V

Here we derive the bound on E™) that is used in Theorem [3| Suppose the assumptions
of Theorem [3 hold. Then by Lemma[2] we have

B < BO 4 2(7@M) - 1
=Dy (20, 2) + 2 (F@ED) - )

and we bound f(2(M))— f*. By definition, #!) = argming 5 vs (Vf(z1), 7)+R(Z,zD)
thus

vs <Vf(:c(1)), :%(1)> + R(EW, 2W) < vs <Vf(x(1)), :1:(1)> (10)
Therefore,
f@) - 1
< <Vf( ), 2 — g > f |30 — 212 by Lemma [4]
< <Vf( ), 21—z > + LfR i), z(M) by assumption on R
< <Vf( -z > + R ,xMy — %R(f(l),x(l)) using that % < %
< <vf(x(1>),x( )ty - %R(ju),x(l)) by
< £ = 57+ Lo 2| - ZLRED, 2 ) by Lemmaf]
< fE) -5

finally, observing that 2(!) = z(, we have f(z(1)) — f* < f(z) — f*, therefore
EW < rDye (20, 2*) + 2 (f(w0) = £*)
> P20, 2 r Zo

which proves the desired inequality.

References

R.T. Rockafellar. Convex Analysis. Princeton University Press, 1970.

10



	Mirror operator *
	Proof of Lemma 1
	Proof of uniqueness of the solution
	Proof of Lemma 2
	Bounding (1)

