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ABSTRACT
The task of item recommendation requires ranking a large cata-

logue of items given a context. Item recommendation algorithms

are evaluated using ranking metrics that depend on the positions of

relevant items. To speed up the computation of metrics, recent work

often uses sampled metrics where only a smaller set of random

items and the relevant items are ranked. This paper investigates

sampled metrics in more detail and shows that they are inconsis-

tent with their exact version, in the sense that they do not persist

relative statements, e.g., recommender A is better than B, not even
in expectation. Moreover, the smaller the sampling size, the less

difference there is between metrics, and for very small sampling

size, all metrics collapse to the AUC metric. We show that it is

possible to improve the quality of the sampled metrics by applying

a correction, obtained by minimizing different criteria such as bias

or mean squared error. We conclude with an empirical evaluation of

the naive sampled metrics and their corrected variants. To summa-

rize, our work suggests that sampling should be avoided for metric

calculation, however if an experimental study needs to sample, the

proposed corrections can improve the quality of the estimate.

CCS CONCEPTS
• Information systems → Recommender systems; Evaluation
of retrieval results; • Computing methodologies→ Ranking.
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1 INTRODUCTION
Over recent years, item recommendation from implicit feedback has

received a lot of attention from the recommender system research

community. At its core, item recommendation is a retrieval task,

where given a context, a catalogue of items should be ranked and

the top scoring ones are shown to the user. Usually the catalogue

of items to retrieve from is large: tens of thousands in academic
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studies and often many millions in industrial applications. Finding

matching items from this large pool is challenging as the user will

usually only explore a few of the highest ranked ones. For evaluating

recommender algorithms, usually sharp metrics such as precision

or recall over the few highest scoring items (e.g., top 10) are chosen.

Another popular class are smooth metrics such as average precision

or normalized discounted cumulative gain (NDCG) which place a

strong emphasis on the top ranked items.

Recently, it has become common in research papers to speed up

evaluation by sampling a small set of irrelevant items and ranking

the relevant documents only among this smaller set [7, 9, 10, 12, 15–

17]. Sampling of negatives is commonly used during training of

large models [4, 13], and several works have studied the implica-

tions of sampling as well as various methods to improve it [5, 6],

see [18] for a comparative study of sampling methods. However,

to the best of our knowledge, the implications of sampling during

evaluation have not been explored. In this work, the consequences

of this approach are studied. In particular, it is shown that findings

from sampled metrics (even in expectation) can be inconsistent

with exact metrics. This means that if a recommender A outper-

forms a recommender B on the sampled metric, it does not imply

that A has a better metric than B when the metric is computed

exactly. This is even a problem in expectation; i.e., with unlimited

repetitions of the measurement. Moreover, a sampled metric has

different characteristics than its exact counterpart. In general, the

smaller the sampling size, the less differences there are between

different metrics, and in the small sample limit, all metrics collapse

to the area under the ROC curve, which discounts positions linearly.

This is particularly problematic because many ranking metrics are

designed to focus on the top positions.

As we will show, the sampled metrics can be viewed as high-bias,

low-variance estimators of the exact metrics. Their low variance

can be particularly misleading if one does not recognize that they

are biased, as repeated measurements may indicate a low variance,

and yet no meaningful conclusion can be drawn because the bias is

recommender-dependent, i.e. the value of the bias depends on the

recommender algorithm being evaluated. We also show that this

issue can be alleviated if one applies a point-wise correction to

the sampled metric, by minimizing criteria that trade-off bias and

variance. Empirical performance of the sampled metrics and their

corrections is illustrated on a movie recommendation problem.

This analysis suggests that if a study is really interested inmetrics

that emphasize the top ranked items, sampling candidates should

be avoided for the purposes of evaluation, and if the size of the

problem is such that sampling is necessary, corrected metrics can

provide a more accurate evaluation. Lastly, if sampling is used,

the reader should be aware that the reported metric has different

characteristics than its name implies.

https://doi.org/10.1145/3394486.3403226
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Figure 1: Visualization of metric vs. predicted rank for 𝑛 = 10, 000. The left side shows the metrics over the whole set of 10, 000
items. The right side zooms onto the contributions of the top 100 ranks. All metrics besides AUC are top heavy and almost
completely ignore the tail. This is usually a desirable property for evaluating ranking because users are unlikely to explore
items further down the result list.

2 EVALUATING ITEM RECOMMENDATION
This section starts by formalizing the most common evaluation

scheme for item recommendation. Let there be a pool of 𝑛 items

to recommend from. For a given instance
1 x, a recommendation

algorithm, 𝐴, returns a ranked list of the 𝑛 items. In an evaluation,

the positions, 𝑅(𝐴, x) ⊆ {1, . . . , 𝑛}, of the withheld relevant items

within this ranking are computed – 𝑅 will also be referred to as

the predicted ranks. For example, 𝑅(𝐴, x) = {3, 5} means for an

instance x recommender 𝐴 ranked two relevant items at positions

3 and 5. Then, a metric𝑀 is used to translate the positions into a

single number measuring the quality of the ranking. This process

is repeated for a set of instances, 𝐷 = {x1, x2, . . .}, and an average

metric is reported:

1

|𝐷 |
∑
x∈𝐷

𝑀 (𝑅(𝐴, x)). (1)

This problem definition assumes that in the ground truth, all rele-

vant items are equally preferred by the user, i.e., that the relevant

items are a set. This is the most commonly used evaluation scheme

in recommender systems. In more complex cases, the ground truth

includes preferences among the relevant items. For example, the

ground truth can be a ranked list or weighted set. Our work shows

issues with sampling in the simpler setup, which implies that the

issues carry over to the more complex case.

3 METRICS
This section recalls commonly used metrics for measuring the qual-

ity of a ranking. For convenience, the arguments,𝐴, x, from 𝑅(𝐴, x)
are omitted whenever the particular recommender, 𝐴, or instance,

x, is clear from context. Instead, the shorter form 𝑅 is used.

Area under the ROC curve (AUC) measures the likelihood that a

random relevant item is ranked higher than a random irrelevant

item.

AUC(𝑅)𝑛 =
1

|𝑅 | (𝑛 − |𝑅 |)
∑
𝑟 ∈𝑅

∑
𝑟 ′∈( {1,...,𝑛}\𝑅)

𝛿 (𝑟 < 𝑟 ′)

=
𝑛 − |𝑅 |−1

2
− 1

|𝑅 |
∑
𝑟 ∈𝑅 𝑟

𝑛 − |𝑅 | , (2)

1
E.g., a user, context, or query.

with the indicator function 𝛿 (𝑏) = 1 if 𝑏 is true and 0 otherwise.

Precision at position 𝑘 measures the fraction of relevant items

among the top 𝑘 predicted items:

Prec(𝑅)𝑘 =
|{𝑟 ∈ 𝑅 : 𝑟 ≤ 𝑘}|

𝑘
. (3)

Recall at position 𝑘 measures the fraction of all relevant items that

were recovered in the top 𝑘 :

Recall(𝑅)𝑘 =
|{𝑟 ∈ 𝑅 : 𝑟 ≤ 𝑘}|

|𝑅 | . (4)

Average Precision at 𝑘 measures the precision at all ranks that hold

a relevant item:

AP(𝑅)𝑘 =
1

min( |𝑅 |, 𝑘)

𝑘∑
𝑖=1

𝛿 (𝑖 ∈ 𝑅)Prec(𝑅)𝑖 . (5)

Normalized discounted cumulative gain (NDCG) at 𝑘 places an

inverse log reward on all positions that hold a relevant item:

NDCG(𝑅)𝑘 =
1∑

min( |𝑅 |,𝑘)
𝑖=1

1

log
2
(𝑖+1)

𝑘∑
𝑖=1

𝛿 (𝑖 ∈ 𝑅) 1

log
2
(𝑖 + 1) . (6)

3.1 Simplified Metrics
The remainder of the paper analyzes these metrics for |𝑅 | = 1, i.e.,

there exists exactly one relevant item which is ranked at position 𝑟 .

This will simplify the analysis and give a better understanding of

the differences between these metrics. The metrics of the previous

section simplify to the following:

AUC(𝑟 )𝑛 =
𝑛 − 𝑟

𝑛 − 1

, (7)

Prec(𝑟 )𝑘 = 𝛿 (𝑟 ≤ 𝑘) 1
𝑘
, (8)

Recall(𝑟 )𝑘 = 𝛿 (𝑟 ≤ 𝑘), (9)

AP(𝑟 )𝑘 = 𝛿 (𝑟 ≤ 𝑘) 1
𝑟
, (10)

NDCG(𝑟 )𝑘 = 𝛿 (𝑟 ≤ 𝑘) 1

log
2
(𝑟 + 1) . (11)



Predicted Ranks AUC AP NDCG Recall@10

A 100, 100, 100, 100, 100 0.990 0.010 0.150 0.000

B 40, 40, 8437, 9266, 4482 0.555 0.010 0.122 0.000

C 212, 2, 743, 5342, 1548 0.843 0.101 0.208 0.200

Table 1: Toy example of evaluating three recommenders A, B and C on five instances.

Predicted Ranks AUC AP NDCG Recall@10

A 100, 100, 100, 100, 100 0.990±0.004 0.630±0.129 0.724±0.097 1.000±0.000
B 40, 40, 8437, 9266, 4482 0.555±0.014 0.336±0.073 0.444±0.054 0.400±0.000
C 212, 2, 743, 5342, 1548 0.843±0.014 0.325±0.050 0.460±0.039 0.567±0.092

Table 2: Sampled evaluation for the recommenders from Table 1. On sampled metrics, the relative ordering of A, B, C is not
preserved, except for AUC.

For metrics such as Average Precision and NDCG, it makes sense

to also define their untruncated counterpart, e.g., for 𝑘 = 𝑛:

AP(𝑟 ) = 1

𝑟
, (12)

NDCG(𝑟 ) = 1

log
2
(𝑟 + 1) . (13)

Some other popular metrics can be reduced to these definitions:

For |𝑅 | = 1, Reciprocal Rank is equivalent to Average Precision, Hit
Ratio is equivalent to Recall and Accuracy is equivalent to Recall

at 1, and Precision at 1.

Figure 1 visualizes how the different ranking metrics trade-off

the position vs. quality score. Average precision has the sharpest

score decay, e.g., rank 1 is twice as valuable as rank 2, whereas for

NDCG, rank 1 is 1.58 more valuable than rank 2. The least position-

aware metric is AUC which places a linear decay on the rank. E.g.,

pushing an item from position 101 to 100 is as valuable as pushing

an item from position 2 to 1.

3.2 Example
This section concludes with a short example that will be used

throughout this work. Let there be three recommenders 𝐴, 𝐵, 𝐶

and a set of 𝑛 = 10, 000 items. Each recommender is evaluated

on five instances (i.e., |𝐷 | = 5) with one relevant item each. For

each instance, each recommender creates a ranking and the posi-

tion at which the relevant item appears is recorded. Assume that

recommender 𝐶 manages to rank the relevant item in one of the

evaluation instances on position 2, besides this it never achieves

a good rank for the other four instances. Assume recommender 𝐵

ranks relevant items in two evaluation instances at position 40. And

recommender 𝐴 is never good nor terrible and the relevant items

are ranked at position 100 in each of the five instances. Table 1

shows more details about the predicted ranks and the correspond-

ing evaluation metrics. On AUC, recommender 𝐴 is the best as it

cares about all ranks equally. For top heavy metrics (AP, NDCG

and Recall), recommender 𝐶 scores the highest. This example will

be revisited in Section 4.2 when sampled metrics are discussed.

4 SAMPLED METRICS
Ranking all items is expensive when the number of items, 𝑛, is

large. Recently, it has become common to sample a small set of𝑚

irrelevant items, add the relevant items, and compute the metrics

only on the ranking generated by this subset [7, 9, 10, 12, 15–17].

It is common to pick the number of sampled irrelevant items,𝑚, in

the order of a hundred while the number of items 𝑛 is much larger,

e.g.,𝑚 = 100 samples for datasets with 𝑛 = {4𝑘, 10𝑘, 17𝑘, 140𝑘, 2𝑀}
items [7, 9, 15],𝑚 = 50 samples for 𝑛 ∈ {2𝑘, 18𝑘, 14𝑘} items [10], or

𝑚 = 200 samples for 𝑛 ∈ {17𝑘, 450𝑘} items [17]. This section will

highlight that this approach is problematic. In particular, results

can become inconsistent with the exact metrics.

Let 𝑅̃ be the ranks of the relevant items among the union of

relevant items and the𝑚 randomly sampled irrelevant items. It is

important to note that 𝑅̃ is a random variable, i.e., it depends on

the random sample of irrelevant items. The properties of 𝑅̃ will be

analyzed in Section 4.3.

4.1 Inconsistency of Sampled Metrics
A central goal of evaluationmetrics is tomake comparisons between

recommenders, such as, recommender 𝐴 has a higher value than
𝐵 on metric 𝑀 . When comparing recommenders among sampled

metrics, we would hope that at least the relative order is preserved

in expectation. This property can be formalized as follows.

Definition 1 (Consistency). Let the evaluation data 𝐷 be fixed.
A metric𝑀 is consistent under sampling if the relative order of any
two recommenders 𝐴 and 𝐵 is preserved in expectation. That is, for
all 𝐴, 𝐵,

1

|𝐷 |
∑
x∈𝐷

𝑀 (𝑅(𝐴, x)) > 1

|𝐷 |
∑
x∈𝐷

𝑀 (𝑅(𝐵, x))

⇐⇒ 𝐸

[
1

|𝐷 |
∑
x∈𝐷

𝑀 (𝑅̃(𝐴, x))
]
> 𝐸

[
1

|𝐷 |
∑
x∈𝐷

𝑀 (𝑅̃(𝐵, x))
]
. (14)

If a metric is inconsistent, then measuring𝑀 on a subsample is

not a good indicator of the true performance of𝑀 .

4.2 Example
Now, the example from Section 3.2 is revisited and the same mea-

sures are computed using sampling. Specifically,𝑚 = 99 random

irrelevant items are sampled, the position 𝑟 of the relevant item

among this sampled subset is found, and then the metrics are com-

puted for the rank 𝑟 within the subsample. This procedure with a

comparable sample size is commonly used in recent work [7, 9, 10,

15, 17].
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Figure 2: Expected sampling metrics for the running example (Section 3.2 and 4.2) while increasing the number of samples.
For Average Precision, NDCG and Recall, even the relative order of recommender performance changes with the number of
samples. That means, conclusions drawn from a subsample are not consistent with the true performance of the recommender.

Table 2 shows the sampled metrics for the example from Sec-

tion 3.2. As this is a random process, for better understanding of

its outcome, here it is repeated 1000 times and the average and

standard deviation is computed
2
.

Compared to the exact metrics in Table 1, even the relative order-

ing of metrics completely changed. On the exact metrics, C is clearly

the best with a 10x higher average precision than B and A. But it

has the lowest average precision when sampled measurements are

used. A and B perform the same on the exact metrics, but A has a 2x

better average precision on the sampled metrics. Sampled average

precision does not give any indication of the true ordering among

the methods. Similarly, sampled NDCG and sampled Recall at 10 do

not agree with the exact metrics. Only AUC is consistent between

sampled and exact computation. The other metrics are inconsistent.

Figure 2 shows the same study as in the previous table, as we vary

the number of samples,𝑚. The relative ordering of recommenders

changes with an increasing sample size. For example, for average

precision, depending on the number of samples, any conclusion

could be drawn: A better than C better than B (for sample size < 50),

A better than B better than C (for sample size ≈ 200), C better than

A better than B (for sample size ≈ 500), and finally C better than A

equal B (for large sample sizes). This example shows that the bias of

sampled average precision is recommender dependent and sample-

size dependent. This is why the relative ordering of recommenders

changes as we change the sample size. Similar observations can be

made for NDCG. Recall is even more sensitive to the sample size,

and it takes about𝑚 = 5, 000 samples out of 𝑛 = 10, 000 items for

the metric to become consistent. Only AUC is consistent for all𝑚,

and the expected metric is independent of sample size.

4.3 Rank Distribution under Sampling
This section takes a closer look at the sampling process and derives

the distribution of ranks, 𝑅̃ and the expected metrics. For simplicity,

the analysis is restricted to rankings with exactly one relevant item,

i.e., |𝑅̃ | = 1, so we can use the simplified metrics from Section 3.1.

Let 𝑟 denote the true rank of the unique relevant item, and 𝑟 denote

its measured rank on the sample.

When an irrelevant item is sampled uniformly, it can either rank

higher or lower than the relevant item. If the number of all items is

2
In a real evaluation, the process would not be repeated because this would contradict

the motivation of sampling to reduce computational cost.

𝑛, then the probability that the sampled item 𝑗 is ranked above 𝑟 is:

𝑝 ( 𝑗 < 𝑟 ) = 𝑟 − 1

𝑛 − 1

. (15)

For example, if 𝑟 is at position 1, the likelihood of a random irrel-

evant being ranked higher is 0. If 𝑟 = 𝑛, then the likelihood is 1.

Note that the pool of all possible sampled items excludes the truly

relevant item and thus has size 𝑛 − 1.

Repeating the sampling procedure 𝑚 times with replacement

and counting how often an item is ranked higher, corresponds to

a Binomial distribution. In other words, the rank 𝑟 obtained from

the sampling process follows 𝑟 ∼ 𝐵

(
𝑚, 𝑟−1𝑛−1

)
+ 1. If there are no

successes in getting a higher ranked item, the rank remains 1, if all

𝑚 samples are successful, the rank is𝑚 + 1. The expected value of

the metrics under this distribution is

𝐸 [𝑀 (𝑟 )] =
𝑚+1∑
𝑖=1

𝑝 (𝑟 = 𝑖)𝑀 (𝑖) . (16)

Note that this is implicitly a function of 𝑟,𝑚, which appear as

parameters of the Binomial distribution. Figure 3 visualizes the

expected metrics 𝐸 (𝑀 (𝑟 )) as we vary 𝑟 . The figure highlights the
weight that the sampled metric assigns to different ranks. Metrics

like Average Precision or NDCG are much less top heavy. Even

sharp metrics such as recall become smooth. Only AUC remains

unchanged. In general, all metrics converge to a linear function in

the small sample limit, similar to AUC behavior.

4.4 Expected Metrics
This section analyzes sampled metrics in a more formal way by

applying eq. (16) to particular metrics. The discussion focuses on

uniform sampling with replacement, i.e., Binomial distributed ranks.

Similar results hold for uniform sampling without replacement. In

this case, the distribution is hypergeometric, with population size

𝑛 − 1, where a pool of 𝑟 − 1 items can be potential successes. When

appropriate, this variation will be discussed as well.

4.4.1 Expected AUC. First, AUC is a linear function of the rank:

AUC𝑛 (𝑟 ) =
𝑛 − 𝑟

𝑛 − 1

= − 1

𝑛 − 1

𝑟 + 𝑛

𝑛 − 1

= const1 𝑟 + const2 . (17)
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Figure 3: Characteristics of a sampledmetric with a varying number of samples. Sampled Average Precision, NDCG and Recall
change their characteristics substantially compared to exact computation of the metric. Even large sampling sizes (𝑚 = 1000

samples of 𝑛 = 10000 items) show large bias. Note this plot zooms into the top 1000 ranks out of 𝑛 = 10000 items.

Thus by linearity of the expectation, and the fact that 𝑟 follows a

Binomial distribution, we have

𝐸 [AUC𝑚+1 (𝑟 )] = AUC𝑚+1 (𝐸 [𝑟 ]) = AUC𝑚+1

(
1 +𝑚 𝑟 − 1

𝑛 − 1

)
=
𝑚 + 1 − 1 −𝑚 𝑟−1

𝑛−1
𝑚 + 1 − 1

=
𝑛 − 𝑟

𝑛 − 1

= AUC𝑛 (𝑟 ) .

That means AUC measurements created by sampling are unbiased

estimators of the exact AUC. This result is not surprising because

the AUC can alternatively be defined as the expectation that a

random relevant item is ranked over a random irrelevant item.

Consequently, AUC is a consistent metric under sampling.

This result holds also for any sampling distributions where the

expected value of the sampled rank is 1 +𝑚 𝑟−1
𝑛−1 . For example, this

is also true for sampling from a hypergeometric distribution – i.e.,

uniform sampling without replacement.

4.4.2 Cut-off metrics. For a cutoffmetric such as recall or precision:

𝐸 [Recall𝑘 (𝑟 )] =
𝑚+1∑
𝑖=1

𝑝 (𝑟 = 𝑖)Recall𝑘 (𝑖) =
𝑚+1∑
𝑖=1

𝑝 (𝑟 = 𝑖)𝛿 (𝑖 ≤ 𝑘)

=

𝑘∑
𝑖=1

𝑝 (𝑟 = 𝑖) = CDF

(
𝑘 − 1;𝑚,

𝑟 − 1

𝑛 − 1

)
. (18)

This analysis carries over to any sampling distribution, including

the hypergeometric distribution.

4.4.3 Average Precision. For the expected value of sampled average

precision, we distinguish two cases. If 𝑟 = 1, then 𝑟 = 1 and the

sampled metric is always equal to 1. If 𝑟 > 1, then 𝑝 ( 𝑗 < 𝑟 ) > 0 and

𝐸 [AP(𝑟 )] =
𝑚+1∑
𝑖=1

𝑝 (𝑟 = 𝑖)AP(𝑖) =
𝑚+1∑
𝑖=1

𝑝 (𝑟 = 𝑖) 1
𝑖

=
1 − (1 − 𝑝 ( 𝑗 < 𝑟 ))𝑚+1

𝑝 ( 𝑗 < 𝑟 ) (𝑚 + 1) =
1 −

(
𝑛−𝑟
𝑛−1

)𝑚+1

(𝑟 − 1)𝑚+1
𝑛−1

. (19)

Interestingly, this can be written as:

1 − AUC𝑛 (𝑟 )𝑚+1

𝑟 − 1

(
𝑛 − 1

𝑚 + 1

)
=

1 − AUC𝑛 (𝑟 )𝑚+1

𝑟 − 1

const.

If 𝐴𝑈𝐶𝑛 (𝑟 )𝑚+1 ≈ 0.0, this would be
1

𝑟−1 and would be similar to

the unsampled average precision metric. However, as soon as the

relevant item is reasonably highly ranked (i.e., AUC is close to 1.0),

it takes many samples𝑚 for this term to approach 0.

4.4.4 Small Sampling Size. This section investigates the behavior

of sampled metrics in the limit, where𝑚 = 1. In this case, 𝑟 ∈ {1, 2},
and for any metric𝑀 and any sampling distribution:

𝐸 [𝑀 (𝑟 )] = 𝑝 (𝑟 = 1)𝑀 (1) + (1 − 𝑝 (𝑟 = 1))𝑀 (2).

For uniform sampling
3
of items, 𝑝 (𝑟 = 1) is the probability to

sample an item that is ranked after 𝑟 , i.e., is 𝑛−𝑟
𝑛−1 . Now,

𝐸 [𝑀 (𝑟 )] = 𝑛 − 𝑟

𝑛 − 1

(𝑀 (1) −𝑀 (2)) +𝑀 (2)

= 𝑟
𝑀 (2) −𝑀 (1)

𝑛 − 1

+ 𝑛𝑀 (1) −𝑀 (2)
𝑛 − 1

= 𝑟 const1 + const2,

which is a linear function of the true rank 𝑟 , regardless of the metric.

If we only care about the ordering produced by two different met-

rics on a set of rankings (eq. 14), we can ignore const2. Similarly, for

const1, only the sign matters when comparing two sets of ranking.

This sign of𝑀 (2) −𝑀 (1) depends on how much ranking a relevant

item at position 1 is preferred over ranking it at position 2. For met-

rics that cannot distinguish between the first and second position,

such as precision and recall at 𝑘 ≥ 2, the sampled metric is always

constant and not useful at all. For any reasonable metric, const1

should be negative, i.e., ranking at position 1 gives a higher metric

than position 2. To summarize, for𝑚 = 1 all metrics give the same

qualitative result in expectation. There is no reason to choose one

metric over the other if we are only interested in relative statements

such as “metric of 𝐴 is higher than metric of 𝐵". Furthermore, the

qualitative result with𝑚 = 1 coincides with exhaustive AUC since

(i) all sampled metrics, including sampled AUC, are indistinguish-

able for𝑚 = 1 as shown in this section, and (ii) sampled AUC is

consistent with exhaustive AUC as shown in Section 4.4.1.

The discussion above shows that it does notmake sense to choose

different metrics for 𝑚 = 1; any sensible metric gives the same

qualitative statement. A similar observation can be found in Figure 3

and 2 where all metrics behave similarly for small samples sizes.

5 CORRECTED METRICS
So far, we have shown that sampled metrics have different charac-

teristics than the same metric on the full set of items. This section

investigates whether we can design a sampled metric 𝑀̂ , a function

3
Here𝑚 = 1, so it does not matter whether sampling is with or without replacement.



from {1, . . . ,𝑚 + 1} to R, such that 𝑀̂ (𝑟 ) provides a good estimate

of 𝑀 (𝑟 ). We will consider different definitions of what a "good"

estimate is.

5.1 Unbiased Estimator of the Rank
Our first approach is motivated by a simple observation. The sam-

pled metrics that are commonly used are obtained by applying the

exact metric𝑀 to the observed rank 𝑟 , i.e. 𝑀̂ (𝑟 ) = 𝑀 (𝑟 ). But 𝑟 is a
poor estimate of the true rank 𝑟 , in fact it always under-estimates

it. Instead, one can measure the metric not on the observed rank 𝑟 ,

but on an unbiased estimator of 𝑟 . Recall from Section 4.3 that

𝑟 |𝑟 ∼ 𝐵

(
𝑚, 𝑟−1𝑛−1

)
+ 1. If we let 𝑝 := 𝑟−1

𝑛−1 , then an unbiased estimator

of 𝑝 is given by
𝑟−1
𝑚 . Thus an unbiased estimator of 𝑟 = 1+ (𝑛 − 1)𝑝

is given by 𝑟 := 1 + (𝑛−1) (𝑟−1)
𝑚 . This motivates using the following

corrected metric:

𝑀̂ (𝑟 ) = 𝑀

(
1 + (𝑛 − 1) (𝑟 − 1)

𝑚

)
. (20)

Since the rank estimate is a real number in [1, 𝑛], and the original

metric𝑀 is only defined on natural numbers, we can either round

the rank estimate or extend 𝑀 using e.g. linear interpolation. In

our experiments, we round using floor ⌊·⌋.

5.2 Minimal Bias Estimator
The first correction used an unbiased estimator of the rank. How-

ever, whenever𝑀 is nonlinear, 𝑀̂ (𝑟 ) = 𝑀 (𝑟 ) is biased in general. A

criterion one may seek to optimize is the average bias of 𝑀̂ (𝑟 ), that
is,

∑
𝑟 𝑝 (𝑟 ) (𝐸 [𝑀̂ (𝑟 ) |𝑟 ] −𝑀 (𝑟 ))2, where 𝑝 (𝑟 ) is a prior on the distri-

bution of ranks, if available
4
, or the uniform distribution otherwise.

Since 𝑀̂ is a function from {1, . . . ,𝑚 + 1} to R, 𝑀̂ can equivalently

be viewed as a vector in R𝑚+1
. Thus we seek to find a vector 𝑀̂

that minimizes the following problem:

argmin

𝑀̂ ∈R𝑚+1

𝑛∑
𝑟=1

𝑝 (𝑟 ) (𝐸 [𝑀̂𝑟 |𝑟 ] −𝑀 (𝑟 ))2 (21)

= argmin

𝑀̂ ∈R𝑚+1

𝑛∑
𝑟=1

𝑝 (𝑟 )
(∑

𝑟

𝑝 (𝑟 |𝑟 )𝑀̂𝑟 −𝑀 (𝑟 )
)
2

.

This is a least squares problem, and its solution is given by

𝑀̂ =

(
𝐴𝑇𝐴

)−1
𝐴𝑇 b, (22)

where

𝐴 ∈ R𝑛×𝑚+1, 𝐴𝑟,𝑟 =
√
𝑝 (𝑟 )𝑝 (𝑟 |𝑟 ),

b ∈ R𝑛, 𝑏𝑟 =
√
𝑝 (𝑟 )𝑀 (𝑟 ). (23)

Note that the problem is under-determined when𝑚 + 1 < 𝑛, i.e. in

general, one cannot obtain an unbiased estimator for all 𝑟 . This is

consistent with the observation made in Section 4.4.4, that for the

limit case𝑚 = 1, anymetric coincides with (an affine transformation

of) AUC.

It may also be desirable for the solution 𝑀̂ to be monotone non-

increasing, so that on any given evaluation point, a higher rank 𝑟

results in a lower estimated metric 𝑀̂𝑟 , although this constraint is

4
Note that the true distribution of ranks 𝑝 (𝑟 ) is algorithm dependent and typically

unknown. We use a uniform prior in our experiments.

not essential when averaging over a large number of evaluation

points. The monotonic constraint corresponds to the linear inequal-

ities 𝑀̂𝑟+1 ≥ 𝑀̂𝑟 for all 𝑟 . In this case, problem (21) becomes an

isotonic regression problem [2]. We will refer to this as Constrained
Least Squares in the experiments.

5.3 Bias-Variance Trade-off
One potential issue with the minimal bias estimator is that it could

have high variance, which we observe numerically in Section 6. In

order to alleviate this problem, we can regularize problem (21) by

introducing a variance term:

argmin

𝑀̂ ∈R𝑚+1

𝑛∑
𝑟=1

𝑝 (𝑟 )
(
(𝐸 [𝑀̂𝑟 |𝑟 ] −𝑀 (𝑟 ))2 + 𝛾 Var[𝑀̂𝑟 |𝑟 ]

)
, (24)

where 𝛾 is a positive constant. This is a regularized least squares

problem and its solution is given by:

𝑀̂ =

(
(1.0 − 𝛾)𝐴𝑇𝐴 + 𝛾diag(c)

)−1
𝐴𝑇 b, (25)

with 𝐴 and b from eq. (23) and 𝑐𝑟 =
∑𝑛
𝑟=1 𝑝 (𝑟 )𝑝 (𝑟 |𝑟 ). When 𝛾 = 0,

this reduces to problem (21). When 𝛾 = 1, this reduces to the least

squares estimator and the solution is

𝑀̂𝑟 =

∑𝑛
𝑟=1 𝑝 (𝑟 |𝑟 )𝑝 (𝑟 )𝑀 (𝑟 )∑𝑛

𝑟=1 𝑝 (𝑟 |𝑟 )𝑝 (𝑟 )
=

∑
𝑟=1

𝑝 (𝑟 |𝑟 )𝑀 (𝑟 ). (26)

In a real study, measurements are aggregated over many evaluation

points, which reduces the overall variance, so a lower value 𝛾 < 1

is preferable.

5.4 Example
Figure 4 shows an example of a corrected average precision met-

ric ÂP, for several choices of the parameter 𝛾 , and for a uniform

prior 𝑝 (𝑟 ). The sample size is 𝑚 = 100 and the full item set is

𝑛 = 10000, i.e., a sampling rate of 1%. As can be seen, when no order

constraint is applied, lower values of 𝛾 give oscillating solutions on

the sample (left figure). This is not a problem in aggregate over the

full evaluation set (right figure). All corrected sampled metrics are

closer, in expectation, to the true metric.

5.5 Effect of the Sample Size and Data Set Size
Increasing the sample size𝑚 reduces the bias of the sampledmetrics,

as seen in Figure 3, as well as the corrected metrics: for example, the

solution in (21) has a lower value when optimizing over a higher

dimensional vector 𝑀̂ ∈ R𝑚+1
. Increasing the size of the item set,

𝑛, has the opposite effect. Increasing the number of evaluation

points, |𝐷 |, decreases the variance of the average estimates. This

mostly benefits the corrected metrics introduced in this section;

the uncorrected metrics are high-bias estimators which will have a

large error even in the limit of zero variance.

6 EXPERIMENTS
In this section, we study sampled metrics on real recommender

algorithms and a real dataset. We investigate: (1) Do recommender

algorithms create different ranking distributions, e.g., some are bet-

ter in the top, some are better overall? (2) Are results from sampled

metrics and exact metrics inconsistent, e.g., a given recommender is
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Figure 5: Distribution of predicted ranks
for three recommender algorithms on
the Movielens 1M dataset.

better on the sampled metric but worse on the true metric? (3) Can

corrections help to get more reliable results?

We use an identical experimental setup as [9] – in particular

the same dataset (binarized Movielens 1M [8]), split (holdout last

event), sampling size (𝑚 = 100) and metrics (Recall@10=HR@10

and NDCG@10). In addition, we report AP and AUC. We study the

behavior of sampled metrics on three popular recommender system

algorithms: matrix factorization and two variations of item-based

collaborative filtering (see Section 9 in the appendix for details).

We want to emphasize that the purpose of our study is not to judge

if a particular recommender algorithm is good. The purpose is

rather to assess the behavior of metrics and correction methods.

To de-emphasize the particular recommender method and hyper-

parameter choice, we will refer to matrix factorization as ‘recom-

mender X’, to the two item-based collaborative filtering variations

as ‘recommender Y’ and ‘recommender Z’.

6.1 Rank Distributions
For each of the 6040 test users, we rank all items (leaving out the

user’s training items) and record at which position the withheld

relevant item appears. In total we get 6040 ranks. Figure 5 shows

the distribution of these ranks. The plot indicates the different

characteristics of the three recommenders. Z is the best in the top

10 but has very poor performance at higher ranks as it puts the

relevant items of over 1600 users in the worst bucket. X is more

balanced and puts only few items at poor ranks; 2310 items are in

the top 100 and less than 300 are in the bottom half. Y is in the

middle, with a better top 10 performance than X, but tends to put

the relevant item at a worse rank overall.

6.2 Sampled Metrics
The leftmost block in Table 3 reports the exact metric and the

sampled metric with standard deviation
5
. As expected from the

rank distributions, for Recall, NDCG and AP, recommender Z is

better than Y better than X on the exact metric. However, on the

sampled metric this does not hold. For sampled Recall, the order

is reversed and recommender X is much better than Y which is

better than Z. All the measures have low standard deviation, so the

issue is not that of variance, but is due to the bias in the sampled

5
We repeated the sampling experiment 100 times to measure the variance.

metrics. Also for NDCG and AP, the worst recommender on the

exact metric (X) appears to be the best according to sampled metrics.

The relative ordering of the two better recommenders is correct.

For AUC, all sampled results are consistent with the exact metrics.

These results indicate that sampled metrics can be inconsistent

in real experiments. In particular, if a study would have compared

the recommenders only on the sampled metrics, the study would

have drawn the wrong conclusion about the performance of the

recommender with respect to top heavy metrics such as Recall,

NDCG and AP. The worst recommender (X) would have been found

to be the best one.

6.3 Corrected Metrics
We finally investigate if correction methods can help. We consider

the three correction strategies proposed in Section 5: rank esti-
mate (eq. 20), constrained least squares (CLS) (eq. 21) with the con-

straint 𝑀̂𝑟 ≥ 𝑀̂𝑟+1, and bias-variance trade-off (BV 𝛾) with 𝛾 ∈
{1.0, 0.1, 0.01, 0.001} and a uniform rank distribution 𝑝 (𝑟 ) = 1/𝑛.

The right block of Table 3 shows the expected metrics under

correction. All methods are closer to the exact results than sampling

without correction. In particular, CLS and BV with low 𝛾 have

values close to the exact metric – which indicates a low bias. All

identify the order better, e.g., all of them place recommender Z

as the best performing method for Recall, NDCG and AP. Some

of them (BV with low 𝛾 ) also get the order of recommenders X

and Y right. Figure 6 shows the expected Recall@10 for different

choices of the sampling size 𝑚. As we can see, the uncorrected

metric performs poorly and needs more than𝑚 = 1000 samples

(equivalent to 1/3rd sampling rate) to correctly order recommenders

X and Y. The corrected metric using a bias-variance trade-off with

𝛾 = 0.1 already has the correct ordering with less than 𝑚 = 60

samples.

While the corrections seem to be effective in expectation, one

also needs to consider the variance of these measurements. Table 4

investigates the bias and variance in more detail. For each sampled

metric and each pair of recommenders, we compare the order of

the pair over the 100 runs, and count how often the order is correct,

i.e. agrees with that of the exact metric. For example, for Recall

and "X vs Y" we count in how many of the 100 runs, the metric of

recommender X is worse than Y. Table 4 shows that the correction

methods are able to resolve most of the mistakes of the uncorrected



Sampled Sampled with Correction

Recommender Exact (uncorrected) Rank Estimate CLS BV 1 BV 0.1 BV 0.01 BV 0.001

R
e
c
a
l
l X 7.60 66.19±0.25 17.46±0.32 8.52±0.16 4.71±0.07 6.49±0.25 7.18±0.59 7.32±1.17

Y 8.84 56.51±0.22 17.26±0.28 8.42±0.14 4.60±0.07 6.95±0.21 8.18±0.51 8.54±1.07
Z 9.42 54.20±0.22 18.67±0.32 9.10±0.15 4.97±0.07 7.44±0.24 8.63±0.59 9.08±1.20

N
D
C
G

X 3.76 39.21±0.20 17.46±0.32 3.99±0.07 2.16±0.04 3.00±0.12 3.34±0.32 3.41±0.71
Y 4.59 34.82±0.16 17.26±0.28 3.94±0.06 2.12±0.03 3.24±0.10 3.85±0.28 4.03±0.66
Z 4.79 35.34±0.16 18.67±0.32 4.27±0.07 2.29±0.04 3.46±0.12 4.05±0.32 4.31±0.74

A
P

X 3.75 32.55±0.21 18.12±0.31 3.58±0.06 2.44±0.03 3.13±0.09 3.37±0.21 3.42±0.49
Y 4.32 30.01±0.20 17.81±0.28 3.54±0.06 2.32±0.03 3.19±0.07 3.62±0.18 3.73±0.45
Z 4.44 30.71±0.21 19.20±0.31 3.82±0.06 2.45±0.03 3.38±0.08 3.79±0.21 3.97±0.51

A
U
C

X 89.13 89.12±0.04 89.24±0.04 89.12±0.04 88.36±0.04 89.04±0.04 89.11±0.04 89.12±0.04
Y 85.33 85.33±0.04 85.48±0.04 85.32±0.04 84.63±0.04 85.26±0.04 85.32±0.04 85.32±0.04
Z 74.73 75.04±0.23 75.24±0.20 75.04±0.21 74.51±0.23 75.02±0.20 75.02±0.24 75.02±0.23

Table 3: Evaluation of three recommenders (X, Y and Z) on the Movielens dataset. Sampled metrics are inconsistent with the
exactmetrics. Correctedmetrics, especially Bias2+𝛾 ∗Variance with𝛾 ≤ 0.1 produce the correct relative ordering in expectation.
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Figure 6: Evaluating recommenders with a varying sample size𝑚. Plots show expected Recall@10 for the uncorrected metric
and the metric corrected by Bias2 + 0.1 ∗ Variance. The uncorrected metric needs𝑚 = 1000 samples to order X and Y correctly
in expectation, while for the corrected metric requires only𝑚 = 60.

Sampled Sampled with Correction

Measure (uncorrected) Rank Estimate CLS BV 1 BV 0.1 BV 0.01 BV 0.001

X
v
s
Y

Recall 0 31 31 11 93 91 78

NDCG 0 31 31 15 93 88 76

AP 0 24 31 0 68 79 66

AUC 100 100 100 100 100 100 100

X
v
s
Z

Recall 0 100 100 100 100 95 86

NDCG 0 100 100 100 100 95 82

AP 0 100 100 61 99 92 81

AUC 100 100 100 100 100 100 100

Y
v
s
Z

Recall 0 100 100 100 95 72 68

NDCG 100 100 100 100 94 70 67

AP 100 100 100 100 98 75 68

AUC 100 100 100 100 100 100 100

Table 4: For the 100 repetitions of the experiment in Table 3, how many times the metric for a pair of recommenders show
the correct ordering. For example: for Recall and "X vs Y", how often the sampled metric of X was smaller than the sampled
metric of Y. In any of the comparisons, a value of 100 indicates the evaluation was always correct, 0 indicates it was always
wrong. The exact metric would always score 100.



metrics. For this particular experiment, BV 0.1 seems to be the

most effective one, getting the correct order on all but one com-

parison with >90% chance. The simple ‘rank estimate’ correction

is surprisingly effective and is strictly better than the uncorrected

metric in all comparisons of Table 4. It is worth mentioning that

under the ‘rank estimate’ correction, Recall@10 and NDCG@10

are identical. However, it still represents an improvement over the

uncorrected metrics which are much more biased and lead to the

wrong conclusion. Rank estimate method is trivial to implement

(i.e., upscaling the rank before applying the metric). In a study with

sampled evaluation, this should be preferred over uncorrected met-

rics. More complex corrections such as the adjusted bias-variance

can get higher gains but are more difficult to implement.

7 SUGGESTIONS
Our results have shown that a sampled metric can be a poor indica-

tor of the true performance of recommender algorithms under this

metric. For uncorrected metrics this is mostly due to the large bias

introduced by sampling. Using correction methods, this bias can

be reduced but at the cost of higher variance. If a study needs to

use sampled metrics and is still interested in the true performance

of the metrics, we suggest to use a correction method as proposed

in this work. In this case it is important to rerun the experiment

with different samples (e.g., different random seeds). It is already

common, in most evaluations, to repeat an experiment 𝑁 times –

usually by varying the dataset (e.g., 𝑁 -fold cross validation). In this

case, variance is introduced by the differences in the dataset split

and potentially by the initialization of the recommender algorithm.

In a sampled evaluation, adding a different seed for negative sam-

pling will add another source of variance. That means it may be

harder to find “statistically significant" differences between two

recommenders. If even under the increased variance a difference

is found, then this is a stronger indication that the recommender

is truly better under the exact metric. The lower the bias in the

corrected metric (e.g., the lower 𝛾 ), the stronger the indication.

While this evaluation is preferable over uncorrected metrics, it is

still prone to either not identifying differences (due to variance) or

drawing false conclusions because of the bias. This bias can only

be eliminated by avoiding sampling altogether.

8 CONCLUSION
This work seeks to bring attention to some issues with sampling

of evaluation metrics. It has shown that most metrics are inconsis-

tent under sampling and can lead to false discoveries. Moreover,

metrics are usually motivated by applications, e.g., does the top

10 list contain a relevant item? Sampled metrics do not measure

the intended quantities – not even in expectation. For this reason,

sampling should be avoided as much as possible during evaluation.

If an experimental study needs to sample, we propose correction

methods that give a better estimate of the true metric, however at

the cost of increased variance. Our analysis focused on the case of

a single relevant item. The general case may be treated by making

the approximation that observed ranks are independent, in which

case similar correction methods can be applied. Deriving correction

methods without independence is an interesting direction for future

research.
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9 REPRODUCIBILITY
We provide further details about the evaluation in Section 6 to facil-

itate reproducibility. There are many different variations of matrix

factorization and item-based collaborative filtering. In this section,

we clarify the exact model, loss function, and hyper-parameters

that we used.

Let𝑈 be the set of users, 𝐼 be the set of items, and 𝐻 ⊆ 𝑈 × 𝐼 be

the training set of items that the user has rated in the past.

Recommender X is a matrix factorization model, for which the

output for a pair (𝑢, 𝑖) ∈ 𝑈 × 𝐼 is given by

𝑦 (𝑢, 𝑖) =
𝑑∑
𝑓 =1

𝑣𝑢,𝑓 𝑣𝑖,𝑓 ,

where 𝑣𝑢,𝑓 , 𝑣𝑖,𝑓 are the parameters of the model. We use the param-

eterization of the loss as proposed in [3]:

argmin

𝑉

∑
(𝑢,𝑖) ∈𝐻

(𝑦 (𝑢, 𝑖) − 1)2 + 𝛼
∑
𝑢∈𝑈

∑
𝑖∈𝐼

𝑦 (𝑢, 𝑖)2 + 𝜆 | |𝑉 | |2𝐹 ,

optimized with implicit alternating least squares [11]. The hyper-

parameters are 𝑑 = 16, 𝜆 = 10, 𝛼 = 0.2.

Recommenders Y and Z are item based collaborative filtering

algorithms [14]. There are many different variations of this algo-

rithm, in particular how to generate the similarity matrix. We use

the following definition. The basic similarity is cosine and we fol-

low the suggestion by [1] to apply an exponent 𝑞 to sharpen the

similarity:

𝑠𝑖, 𝑗 =

(
|{𝑢 : (𝑢, 𝑖) ∈ 𝐻 } ∩ {𝑢 : (𝑢, 𝑗) ∈ 𝐻 }|√
|{𝑢 : (𝑢, 𝑖) ∈ 𝐻 }|

√
|{𝑢 : (𝑢, 𝑗) ∈ 𝐻 }|

)𝑞
(27)

Then we add the option to sparsify based on k-nearest neighbors:

𝑠 ′𝑖, 𝑗 = 𝑠𝑖, 𝑗 𝛿 (𝑖 ∈ 𝑁𝑘 ( 𝑗)) 𝛿 ( 𝑗 ∈ 𝑁𝑘′ (𝑖)), (28)

where 𝑁𝑘 (𝑖) are the 𝑘 closest items to 𝑖 based on 𝑠 . We allow both

selecting for row or column neighbors. Then we apply row normal-

ization:

𝑠 ′′𝑖, 𝑗 =
𝑠 ′
𝑖, 𝑗

| |s′
𝑖
| | . (29)

Finally the prediction is:

𝑦 (𝑢, 𝑖) =
∑

𝑗 :(𝑢,𝑗) ∈𝐻 𝑠 ′′
𝑖, 𝑗∑

𝑗 ∈𝐼 𝑠
′′
𝑖, 𝑗

. (30)

Recommender Y uses the following hyperparameters: 𝑞 = 3, 𝑘 =

∞, 𝑘 ′ = ∞. Recommender Z uses the following hyperparameters:

𝑞 = 1, 𝑘 = ∞, 𝑘 ′ = 10.
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