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Abstract

We study the repeated, non-atomic routing
game, in which selfish players make a se-
quence of routing decisions. We consider a
model in which players use regret-minimizing
algorithms as the learning mechanism, and
study the resulting dynamics. We are con-
cerned in particular with the convergence to
the set of Nash equilibria of the routing game.
No-regret learning algorithms are known to
guarantee convergence of a subsequence of
population strategies. We are concerned with
convergence of the actual sequence. We show
that convergence holds for a large class of
online learning algorithms, inspired from the
continuous-time replicator dynamics. In par-
ticular, the discounted Hedge algorithm is
proved to belong to this class, which guar-
antees its convergence.

1. Introduction

Routing games are important in modeling and un-
derstanding the interaction of non-cooperative players
who share resources, such as roads in a road network
and links in a communication network. They have
been studied extensively, including the seminal work
of Beckmann et al. (1955) and Dafermos & Sparrow
(1969). In a one-shot scenario, selfish players choose
the routes that minimize their individual travel time.
One solution concept to the game is the Nash equi-
librium, also called Wardrop equilibrium in the traf-
fic literature (1952). In some classes of games, Nash
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equilibria can be hard to compute and have been ques-
tioned as a realistic equilibrium concept, for example
by Papadimitriou (1994). By contrast, for one-shot
non-atomic routing games, Nash equilibria are known
to be easy to compute as they can be expressed as
the solution to a convex optimization problem, using
a convex potential function, due to Rosenthal (1973).
This is an argument in favor of the one-shot routing
game model. However, most realistic scenarios do not
correspond to a one-shot game, but rather a repeated
game, in which players make a sequence of routing de-
cisions and may adapt their strategies given the out-
come on previous days. Therefore studying the re-
peated routing game is important to understand how
players can arrive at the equilibrium. Arguably, a good
learning model for the population of players should be
distributed and easy to implement by individual play-
ers. A natural framework is that of online learning.

No-regret learning is of particular interest, given its
generality and ease of implementation, and the fact
that it only requires the current losses to be revealed.
The Hedge algorithm is one example of no-regret learn-
ing, introduced for Machine Learning by Freund &
Schapire (1999), a generalization of the weighted ma-
jority algorithm of Littlestone & Warmuth (1989).
Cesa-Bianchi & Lugosi (2006) give convergence re-
sults, together with convergence rates, for no-regret
algorithms. These results hold for a broad class of
games. However, they guarantee convergence of the
time-averaged strategies, and not the actual sequence
of strategies.

Other learning processes have been studied for re-
peated routing games, such as fictitious play by Mon-
derer & Shapley (1996), adaptive sampling by Fischer
et al. (2010) or continuous-time replicator dynamics
by Fischer & Vöcking (2004), which is also of partic-
ular interest in evolutionary game theory, see for ex-
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ample Weibull (1997). For some classes of continuous-
time dynamics, convergence of the actual sequence is
guaranteed. For example, Sandholm proved conver-
gence in continuous-time potential games for a class of
evolutionary dynamics which satisfy a positive corre-
lation condition (2001). Blum et al. proved in (2006)
that under no-regret learning, the resulting sequence
of population strategies converges, on a 1− ε fraction
of days, to the set of ε-approximate Nash equilibria,
and they gave explicit convergence rates that depend
on the Lipschitz constant of the latency functions.

We are concerned with convergence of the actual se-
quence of strategies (as opposed to a subsequence).
Our approach combines ideas from evolutionary dy-
namics and no-regret learning. In Sections 2 and 3,
we present the model and summarize existing results.
In Section 4, we prove that convergence holds for a
class of algorithms, which have sublinear discounted
regret, and which can be viewed as a generalization of
replicator dynamics.

2. The model

2.1. Non-atomic routing game

We consider a set X of players. A routing game is
a non-cooperative game played on a directed graph
G = (V, E) representing a network, and in which a pure
strategy corresponds to a directed path on the graph.
To formalize the notion of non-atomicity, we endow
X with a structure of measurable space (X ,M,m),
where M is a σ-algebra of measurable sets, and m is
a measure. The set of players is said to be non-atomic
if each single player x ∈ X is negligible for m.

We consider a setting similar to (Wardrop, 1952),
in which the set of players is partitioned in popu-
lations or commodities X = tKk=1Xk, where each
Xk is measurable and has positive finite mea-
sure. Formally, the model is defined by the tuple
(E ;K; (Xk)k∈[K]; (Pk)k∈[K]; (ce)e∈E), where E denotes
the finite set of edges, K is the number of commodi-
ties, [K] denotes the set {1, . . . ,K}, and for all k,
Pk ⊆ P (E) is a set of paths (pure strategies) avail-
able to players in Xk. For each k, all paths in Pk
have a common source sk ∈ V and a common desti-
nation tk ∈ V. We will denote P the disjoint union
P = tKk=1Pk. The positive measure of Xk is denoted
Fk = m(Xk) and called the total flow of Xk. For each
edge e, ce(·) : R+ → R+ is an edge latency function
satisfying the following assumption:

Assumption 1. The latency functions ce are assumed
to be continuous, non-decreasing, and locally Lipschitz.

v2 v3

v0 v1

v4

v5

v6

Figure 1. Example of a network with K = 2 populations.
Population 1 travels from v0 to v1, and population 2 travels
from v2 to v3.

At a microscopic scale, the joint action of all play-
ers in X can be represented by an action profile
A : x ∈ X 7→ A(x) which maps a player x ∈ Xk
to a path A(x) ∈ Pk. This function is assumed
to be M-measurable, and defines, for each popula-
tion Xk, a path distribution µk = (µkp)p∈Pk , where

µkp = 1
Fk

∫
Xk 1{A(x)=p}dm(x) is the fraction of players

utilizing path p ∈ Pk. We have µk ∈ ∆Pk , the simplex
on Pk, that is, ∆Pk = {u ∈ RPk+ :

∑
p∈Pk up = 1}.

The pure strategy profile can be summarized at a
macroscopic scale using the product of distributions
µ = (µ1, · · · , µK) ∈ ∆P1 × · · · ×∆PK . The product of
simplexes will be denoted ∆.

The distribution µ determines the edge flow or load,
defined as φe =

∑K
k=1 Fk

∑
p∈Pk:e∈p µ

k
p. This can

be written compactly as φe = (Mµ)e where M =
[M1| . . . |MK ] ∈ RE×P is a weighted incidence matrix:

∀e ∈ E , ∀k ∈ [K], ∀p ∈ Pk Mk
e,p =

{
Fk if e ∈ p
0 otherwise

For each edge e, the edge load determines the edge
latency, given by ce(φe). Finally, the loss of a player
who chooses path p is simply the sum of edge laten-
cies along the path,

∑
e∈p ce(φe). This latency is en-

tirely determined by the distribution µ, so we define a
path latency function (or loss function) `p : µ ∈ ∆ 7→
`kp(µ) =

∑
e∈p ce((Mµ)e). Finally, we write `k(µ) to

denote the vector of path latencies (`kp(µ))p∈Pk , and

`(µ) = (`1(µ), . . . , `K(µ)).

2.2. Nash equilibria and the Rosenthal
potential function

Given this setting, we now define Nash equilibria of
the routing game.

Definition 2.1 (Nash equilibrium).
A distribution µ ∈ ∆ is a Nash equilibrium if for every
population k, whenever µkp > 0 for some path p ∈ Pk,

then `kp′(µ) ≥ `kp(µ) for all p′ ∈ Pk. We will denote by
N ⊂ ∆ the set of Nash equilibria.

The definition implies that, for a commodity k, all



On the convergence of no-regret learning in selfish routing

paths with non-zero mass have equal latencies and
paths with zero mass have larger latencies.

There is a natural potential function that allows one
to formulate the problem of computing the set N of
Nash equilibria as the solution of a convex optimiza-
tion problem. Consider the function

V (µ) =
∑
e∈E

∫ (Mµ)e

0

ce(u)du (1)

The gradient of V is the vector of path latencies:

∀k, ∀p ∈ Pk,
∂V

∂µkp
(µ) = Fk`

k
p(µ) (2)

Theorem 1. (Rosenthal, 1973) N is the set of mini-
mizers of V in ∆. It is a non-empty convex compact
set. We denote VN the value of V on N .

A proof can be found for example in (Roughgarden,
2007). As a result of Theorem 1, computing the Nash
equilibria of the routing game can be done efficiently
by minimizing the potential. However, the idea of
minimizing a potential function cannot be directly ap-
plied to designing a distributed learning algorithm, as
it would a priori require coordination between players.

2.3. Restricted Nash equilibria

In the analysis, we use a weaker notion of equilibrium,
introduced by Fischer & Vöcking in (2004).

Definition 2.2 (Restricted Nash equilibrium). A
product distribution µ is a restricted Nash equilibrium
if all paths with non-zero mass have equal latencies for
each commodity i.e. for all k and all p, p′ ∈ Pk such
that µkp, µ

k
p′ > 0, `kp(µ) = `kp′(µ). We will denote RN

the set of restricted Nash equilibria.

Such an equilibrium is restricted in the sense that it
would be a Nash equilibrium of the routing game if we
restricted the set of paths to its support (Fischer &
Vöcking, 2004).

Remark 1. Restricted Nash equilibria are also min-
imizers of the potential function V if we restrict the
feasible set to distributions with the same support. As
the number of supports is finite, the set V (RN ) of po-
tential values of restricted Nash equilibria is also finite.

3. No-regret learning in the repeated
routing game

3.1. The online learning framework

We now define the online learning setting. Assume
players make decisions repeatedly, and index iterations

Algorithm 1 Online learning setting

Input: For every player x ∈ Xk, a learning algorithm
(hxτ )τ and initial distribution π(0)(x) ∈ ∆Pk .

1: for each time step τ do
2: Every player x independently draws a path

A(τ)(x) ∼ π(τ)(x).

3: For all k, the vector of path losses `k(µ(τ)) is revealed
to players in Xk. Players incur losses corresponding
to their path choice.

4: Every player updates her strategy: π(τ+1)(x) =

hxτ

(
(`k(µ(t)))t≤τ , π

(τ)(x)
)

.

by τ ∈ N. For each commodity k, every player x ∈ Xk
maintains a mixed strategy π(τ)(x) ∈ ∆Pk , which re-
flects her preferences on paths, and randomly draws a
path A(τ)(x) ∼ π(τ)(x). Similarly to the one-shot case,
the path profile A(τ) defines a distribution µ(τ) ∈ ∆.

To formalize the probabilistic setting, let (Ω,F ,P) be
a probability space. We suppose that for x ∈ Xk,
A(τ)(x) is a random variable with values in Pk such
that the mapping (x, ω) 7→ A(τ)(x)(ω) is M ⊗ F-
measurable for all τ . We have for all x ∈ Xk and
p ∈ Pk: π

(τ)
p (x) = P[A(τ)(x) = p]. In this setting,

the distribution µk
(τ)

is a random variable, as we re-

call that ∀p ∈ Pk, µk
(τ)
p = 1

Fk

∫
Xk 1{A(τ)(x)=p}dm(x),

and A(τ)(x) is random. In particular, E[µk
(τ)
p ] =

1
Fk

∫
Xk π

(τ)
p (x)dm(x).

Since players are non-cooperative, we consider that
players randomize independently. Under this assump-
tion, the distribution µ(τ) is almost surely equal to its
expectation. Here, non-atomicity is essential.

Proposition 1. In the non-atomic routing game, if

players randomize independently, then for all τ , µk
(τ)

is a random variable with zero variance.

This follows from Fubini’s theorem. As a result, one
can think of the distribution µ as a deterministic vari-
able, although individual players are randomizing.

Definition 3.1 (Online algorithm for routing). An
online algorithm (or update rule) for the routing game,
applied by a player x ∈ Xk, is a deterministic se-
quence of functions (hτ )τ∈N such that at iteration τ ,
hτ maps the history of losses (`k(µ(t)))t≤τ and the cur-
rent strategy π(τ)(x) to the strategy on the next itera-
tion, π(τ+1)(x) = hτ

(
(`k(µ(t)))t≤τ , π(τ)(x)

)
.

This online learning framework is summarized in Al-
gorithm 1. Here, we assume that, at the end of day τ ,
a player x ∈ Xk observes all the path latencies for her
commodity, i.e. (`kp(µ(τ)))p∈Pk . This can be achieved
for example by having a central authority publicly re-
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port the path latencies at the end of a given day. We
note however that the information model could be fur-
ther restricted such that every player only observes the
latency on his/her own path. One appropriate frame-
work to study this problem is that of multi-armed ban-
dit learning, see for example Auer et al. (2002), György
et al. (2007), Dani et al. (2008), and Bubeck & Cesa-
Bianchi (2012). However, we do not currently consider
this extension.

3.2. Discounted regret

The regret is a natural measure of performance of a
learning algorithm (Cesa-Bianchi & Lugosi, 2006). In
particular, we are interested in online learning algo-
rithms with sublinear discounted regret. More pre-
cisely, we assume that losses are discounted over time,
by a decreasing sequence of factors (γτ )τ∈N. So at it-
eration τ , a player who chooses path p incurs a loss
γτ `

k
p(µ(τ)). The sequence (γτ )τ is assumed to be uni-

versal: the discounting is identical across players. This
can be justified from an economic perspective if one
thinks of discounting as reflecting interest rates.

Assumption 2. (γτ )τ is a positive, decreasing, non-
summable sequence.

The idea of discounted regret is common in the on-
line learning literature, and is studied for example by
Cesa-Bianchi & Lugosi in (2006). It is worth noting,
however, that the sequence is usually assumed to be in-
creasing. In our case, discounting the losses by a de-
creasing sequence can be motivated by the assumption
that players value future time less than current time.
Given the sequence of discount factors, the discounted
regret is defined as follows:

Definition 3.2 (Discounted regret). Consider a
player x ∈ Xk. Given a sequence of strategies
(π(τ)(x))τ and a sequence of distributions (µ(τ))τ , the
discounted regret of x up to time T is:

R(T )(x) = L(T )(x)− min
p∈Pk

L k
p

(T )
(3)

where L(T )(x) and L k
p

(T )
are, respectively, the ex-

pected discounted cumulative loss incurred by x, and
the discounted cumulative loss on path p ∈ Pk:

L(T )(x) =
∑
τ≤T

γτ
∑
p∈Pk

π(τ)
p (x)`kp(µ(τ))

L k
p

(T )
=
∑
τ≤T

γτ `
k
p(µ(τ))

Definition 3.3 (Sublinear discounted regret). An on-
line learning algorithm for routing (hτ )τ is said to have

sublinear discounted regret if whenever a player x ap-
plies the algorithm, for all initial strategies π(0)(x) and
all sequences (µ(τ)), lim supT→∞

1∑
τ≤T γτ

R(T )(x) ≤ 0.

An algorithm with sublinear discounted regret per-
forms asymptotically as well as the best constant strat-
egy in hindsight.

3.3. Discounted Hedge algorithm

We now give one example of online learning algorithm
with sublinear discounted regret.

Definition 3.4 (Hedge algorithm). Consider a player
x ∈ Xk. A Hedge algorithm with learning rates (γτ )τ is
an online algorithm (hτ )τ which satisfies the following
update equation:

π(τ+1) ∝
(
π(τ)
p e−γτ

`kp(µ(τ))

ρ

)
p∈Pk

(4)

∝
(
π(0)
p e−

Lk
p (τ)

ρ

)
p∈Pk

(5)

Next, we give a bound on the discounted regret of
the Hedge algorithm, a generalization of Lemma 5.1
in Cesa-Bianchi & Lugosi (2006).

Proposition 2. If (γτ )τ is a square-summable se-
quence satisfying Assumption 2, the Hedge algorithm
with learning rates (γτ )τ , applied by a player x ∈ Xk,
has sublinear regret. More precisely, if ρ is a uniform
upper bound on the sequence of losses, then

R(T )(x) ≤ −ρ log π
(0)
min(x) + ρ

∑
τ≤T

γ2
τ

8
.

where π
(0)
min = minp π

(0)
p

Proof. Let ξ : u ∈ RPk+ 7→ log(
∑
p∈Pk π

(0)
p e

up
ρ ). By

equation (5), we have for all τ :

ξ(L k(τ)
)− ξ(L k(τ−1)

)

= log

∑p∈Pk π
(0)
p e−

Lk
p

(τ−1)

ρ e−γτ
`kp(µ(τ))

ρ∑
p∈Pk πp(0)e−

Lk
p

(τ−1)

ρ


= log

∑
p∈Pk

π(τ)
p e−γτ

`kp(µ(τ))

ρ


≤ −γτ

∑
p∈Pk

π(τ)
p

`kp(µ(τ))

ρ
+
γ2
τ

8

The last inequality follows from Hoeffding’s lemma,
since 0 ≤ `kp(µ(τ))/ρ ≤ 1.
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Summing over τ , we have:

ξ(L k
p

(T )
) ≤ −L

(T )(x)

ρ
+
∑
τ≤T

γ2
τ

8

As log is increasing, ξ(L k
p

(T )
) ≥ log(π

(0)
p ) + L k

p
(τ)
/ρ

for all p ∈ Pk. Rearranging, we have:

L(T )(x)−L k
p

(T ) ≤ −ρ log π(0)
p + ρ

∑
τ≤T

γ2
τ

8

we conclude by maximizing both sides over p ∈ Pk.

Given the previous Proposition, discounting losses can
be interpreted, in the case of the Hedge algorithm, as
using a decreasing sequence of learning rates (γτ )τ .

3.4. Population regret

We define the discounted regret for population Xk by
integrating the individual regrets of players:

Rk
(T )

=
1

Fk

∫
Xk
R(T )(x)dm(x)

If we define the average cumulative loss of popu-

lation Xk to be Lk
(T )

= 1
Fk

∫
Xk L

(T )(x)dm(x) =∑
τ≤T γτ

〈
µk

(τ)
, `k(µ(τ))

〉
, then we also have Rk

(T )
=

Lk
(T )−minp∈Pk L k

p
(T )

. As a consequence of this def-
inition, if all players in Xk apply algorithms with sub-
linear discounted regret, the population-wide regret is

also sublinear, that is, lim supT→∞
1∑

τ≤T γτ
Rk

(T ) ≤ 0.

4. Convergence to Nash equilibria

4.1. Convergence on almost all days

We give a first convergence result. For µ ∈ ∆, let
d(µ,N ) = infν∈N ‖µ− ν‖ where ‖ · ‖ is the Euclidean
distance on RP . We say that a sequence (µ(τ))τ con-
verges to the set N if d(µ(τ),N )→ 0.

Proposition 3 (Statistical convergence to Nash equi-
libria). Consider a routing game with population dy-
namics such that the population regret is sublinear, and
let (µ(τ))τ be the sequence of path distributions. Then
there exists a subsequence (µ(τ))τ∈T which converges
to N , defined on a subset T ⊂ N of density one, that

is, limT→∞
∑
τ∈T :τ≤T γτ∑
τ∈N:τ≤T γτ

= 1.

In other words, the strategies converge on almost all
days if the population regret is sublinear. This is a
limit case in Theorem 5.1 in (Blum et al., 2006). We
present a different proof which uses the Rosenthal po-
tential function, and which holds even if the latency

functions are not Lipschitz continuous. We first need
the following technical Lemma.

Lemma 1. Let (γτ )τ∈N be a non-summable sequence
of positive weights. If a real sequence (u(τ))τ∈N con-
verges absolutely to u in the sense of Cesàro means

w.r.t. (γτ )τ , that is limT→∞
∑
τ≤T γτ |u(τ)−u|∑

τ≤T γτ
= 0, then

there exists a subset of indexes T of density one such
that the subsequence (u(τ))τ∈T converges to u.

Proof of Proposition 3. Let µ? ∈ N be a Nash equilib-
rium, i.e. µ? ∈ arg minµ∈∆ V (see Theorem 1). Then
by convexity of V and Equation (2),

V (µ(τ))− VN ≤
〈
∇V (µ(τ)), µ(τ) − µ?

〉
≤

K∑
k=1

Fk

〈
`k(µ(τ)), µk

(τ) − µ?k
〉

here we use 〈·, ·〉 to denote the inner product on RP .
Then, taking the weighted sum up to time T ,∑

τ≤T γτ (V (µ(τ))− VN )∑
τ≤T γτ

≤
K∑
k=1

Fk

∑
τ≤T

γτ

〈
µk

(τ)
, `k(µ(τ))

〉
−
〈
µ?k,L k(T )

〉
∑
τ≤T

γτ

≤
K∑
k=1

Fk
Rk

(T )∑
τ≤T γτ

where the last inequality follows from the fact that〈
µ?,L k(T )

〉
≥ minp L k

p
(T )

. Since, for all τ , V (µ(τ))−

VN ≥ 0, and for all k, lim supT→∞
1∑

τ≤T γτ
Rk

(T ) ≤ 0

by assumption, we have (V (µ(τ)))τ converges abso-
lutely to VN in the sense of Cesàro means w.r.t. (γτ )τ .
Thus by Lemma 1, there exists a dense subset of in-
dexes T such that (V (µ(τ)))τ∈T converges to VN , and
by continuity of V and compactness of ∆, the subse-
quence (µ(τ))τ∈T converges to N .

In order to show strong convergence for a class of on-
line algorithms with sublinear discounted regret, we
first study the continuous-time replicator dynamics,
which can be motivated as a continuous-time limit of
the Hedge algorithm, as discussed next.

4.2. Continuous-time dynamics

We consider the discounted Hedge algorithm with a
vanishing sequence of learning rates (γτ ), acting on
the sequence of population strategies (µ(τ))τ∈N.
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Figure 2. Example of a routing game payed on the example network of Figure 1. Latency functions are taken to be

quadratic increasing, and generated randomly. The population strategies (µk
(τ)

)τ obey the Hedge algorithm. The figures
show the trajectories in the simplex ∆Pk , and the resulting path latencies (`kp(µ(τ))) for population X1 (top) and X2

(bottom). With a constant learning rate γ = 0.7, (µk
(τ)

)τ does not converge (left). With a harmonic sequence of learning

rates, γτ = 1
1+τ/10

, (µk
(τ)

)τ converges to the set of Nash equilibria.

Let us imagine an underlying continuous time T ∈ R+,
and set µ(Tτ ) = µ(τ), where Tτ is the time at which
the τ -th update happens. Now choosing the update
times to be Tτ =

∑τ
t=1 γt, we can write, ∀p ∈ Pk

µkp(Tτ+1) = µkp
(τ+1)

= µkp
(τ) e−γτ `

k
p(µ(τ))/ρ∑

p′∈Pk µ
k
p′

(τ)
e
−γτ `kp′ (µ(τ))/ρ

= µkp
(τ) 1− γτ `kp(µ(τ))/ρ+ o(γτ )

1− γτ
∑
p′∈Pk µ

k
p′

(τ)
`kp′(µ

(τ))/ρ+ o(γτ )

= µkp(Tτ )

[
1 + γτ

〈
µ(τ), `k(µ(τ))

〉
− `kp(µ(τ))

ρ

]
+ o(γτ )

Thus,

µkp(Tτ + γτ )− µkp(Tτ )

γτ
=

µkp(Tτ )

〈
µk(Tτ ), `k(µ(Tτ ))

〉
− `kp(µ(Tτ ))

ρ
+ o(1)

taking the limit of the above equation as γτ → 0, we
obtain the following ODE{

µ(0) ∈ ∆̊
dµ(t)
dt = G(µ(t), `(µ(t)))

(6)

where ∀k and ∀p ∈ Pk

Gkp(µ, `) = µkp

〈
µk, `k

〉
− `kp

ρ
(7)

Here, ∆̊ = {µ ∈ ∆: ∀p ∈ P, µp > 0} is the relative

interior of ∆. Starting in ∆̊ guarantees that µ(t) re-
mains in ∆̊ for all t. In this derivation, the discount
factors γτ are interpreted as discrete time steps. The
dynamics described by this ODE, called the replicator
dynamics (Fischer & Vöcking, 2004), has been stud-
ied extensively. One can observe in particular that the
set RN of restricted Nash equilibria (Definition 2.2) is
exactly the set of stationary points for the ODE.

4.3. Replicator updates

By discretizing the replicator dynamics, we obtain a
multiplicative update rule we call REP for Replicator,
which has desirable properties which we prove next.

Definition 4.1 (REP algorithm). The replicator
(REP) algorithm with rates (γτ )τ , γτ ≤ 1, applied by
x ∈ Xk, is an online algorithm for routing given by the
following update equation

π(τ+1)
p − π(τ)

p = γτG
k
p(π(τ), `(µ(τ))) (8)

We note that summing this update equation over p ∈
Pk yields

∑
p∈Pk(π

(τ+1)
p − π(τ)

p ) = 0, thus π remains
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in ∆Pk as long as γτ ≤ 1. We now show that the REP
update rule guarantees a sublinear discounted regret.
To see this, we need the following regret bound on
multiplicative-weights updates with signed losses.

Lemma 2. Consider an online learning setting with

signed losses s
(τ)
p ∈ [−1, 1] and discount factors γτ ≤

1/2 satisfying Assumption 2. Then the discounted
multiplicative-weights algorithm defined by

π(τ+1) ∝
(
π(τ)
p (1− γτs(τ)

p )
)
p

(9)

guarantees that for any p,∑
τ≤T

γτ

(〈
π(τ), s(τ)

〉
− s(τ)

p

)
≤− log π

(0)
min +

∑
τ≤T

γ2
τ

This Lemma is a straightforward extension of Theo-
rem 2.1 in (Arora et al., 2012) to the discounted case.

Proposition 4. If (γτ )τ is a square-summable se-
quence of discount factors satisfying Assumption 2 and
such that γτ ≤ 1/2 for all τ , the (REP) update rule
with rates (γτ )τ has sublinear discounted regret.

Proof. Let r
(τ)
p =

〈
π(τ), `k(µ(τ))

〉
− `kp(µ(τ)) ∈ [−ρ, ρ]

be the instantaneous regret of the player. Then the
REP update can be viewed as a multiplicative-weights

algorithm with update rule (9), signed losses s
(τ)
p =

−rkp
(τ)
/ρ ∈ [−1, 1], and discount factors γτ . Observing

that
〈
rk

(τ)
, π(τ)

〉
= 0, we have by Lemma 2:

1

ρ

∑
τ≤T

γτr
k(τ)

p ≤ − log πmin(0) +
∑
τ≤T

γ2
τ

Rearranging and taking the maximum over p ∈ Pk, we
obtain the following bound on the discounted regret

R(T )(x) ≤ −ρ log π
(0)
min + ρ

∑
τ≤T

γ2
τ

which shows lim supT→∞
1∑

τ≤T γτ
R(T )(x) ≤ 0.

4.4. Approximate Replicator algorithms

Definition 4.2 (AREP algorithm). An online algo-
rithm for routing, applied by x ∈ Xk, is said to be an
approximate replicator algorithm (AREP) if its update
equation can be written as

π(τ+1)
p − π(τ)

p = γτ (Gkp(π(τ), `(µ(τ))) + U (τ+1)
p ) (10)

where (U (τ))τ≥1 is a bounded sequence of stochastic
perturbations with values in RPk , and which satisfies
the following condition: for all T > 0,

lim
τ1→∞

max
τ2:

τ2∑
τ=τ1

γτ<T

∥∥∥∥∥
τ2∑

τ=τ1

γτU
(τ+1)

∥∥∥∥∥ = 0 (11)

Condition (11) corresponds to the first hypothesis of
Proposition 4.1 in (Benäım, 1999), which we will use in
the proof of the main convergence theorem. It bounds
the cumulative perturbation over a given time inter-
val T . Intuitively, this condition will ensure that the
trajectories of a discrete AREP algorithm are asymp-
totically close to the trajectories of the continuous-
time replicator dynamics.

Note that the REP update rule is an AREP algorithm
with zero perturbation. By allowing perturbations,
we extend the class of algorithms for which we can
show convergence. In particular, we show that the
discounted Hedge algorithm is in this class.

Proposition 5. The Hedge algorithm with learning
rates (γτ )τ satisfying Assumption 2 with

∑
τ γ

2
τ < ∞

is an AREP algorithm.

Proof. Let (π(τ))τ∈N be the sequence of player strate-
gies, and (µ(τ))τ be any sequence of population distri-
butions. By definition of the Hedge algorithm,

π(τ+1)
p = π(τ)

p e−γτ
`kp(µ(τ))

ρ /
∑
p′∈Pk

π
(τ)
p′ e

−γτ
`k
p′ (µ

(τ))

ρ

which we can write in the form of equation (10), with

U (τ+1)
p =

π
(τ)
p

γτ

[
e
−γτ

`kp(µ(τ))−˜̀k(τ)

ρ + γτ
`kp(µ(τ))− ˜̀k(τ)

ρ

− 1
]

+ π(τ)
p

˜̀k(τ) − ¯̀k(τ)

ρ

˜̀k(τ) = − ρ

γτ
log

∑
p′∈Pk

π
(τ)

p′ e
−γτ `kp′ (µ

(τ))/ρ

¯̀k(τ) =
〈
π(τ), `k(µ(τ))

〉
Letting θ(x) = ex − x− 1, we have for all p ∈ Pk:

U (τ+1)
p =

π
(τ)
p

γτ
θ

(
−γτ

`p(µ
(τ))− ˜̀k(τ)

ρ

)

+
π

(τ)
p

ρ

(
˜̀k(τ) − ¯̀k(τ)

)
The first term is a O(γτ ) as θ(x) ∼0 x

2/2. To bound
the second term, we have by concavity of the logarithm

˜̀k(τ) ≤
∑
p′∈Pk

π
(τ)
p′ `

k
p′(µ

(τ)) = ¯̀k(τ)

And by Hoeffding’s lemma,

log
∑
p′∈Pk

πp′e
−γτ

`
p′ (µ

(τ))

ρ ≤ −γτ
∑
p′∈Pk

π
(τ)

p′
`p′(µ

(τ))

ρ
+
γ2
τ

8

Rearranging, we have 0 ≤ ¯̀k(τ) − ˜̀k(τ) ≤ ργτ
8 ,

therefore U
(τ+1)
p = O(γτ ), and ‖

∑τ2
τ=τ1

γτU
(τ+1)‖ =

O(
∑τ2
τ=τ1

γ2
t ). Condition (11) is thus verified.
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4.5. Strong convergence to Nash equilibria

Theorem 2. If for all k, the population strategies

(µk
(τ)

)τ satisfy an AREP algorithm with sublinear re-
gret, then the sequence (µ(τ)) converges to the set of
Nash equilibria.

Proof. The proof proceeds in two steps: first, we use
results from (Benäım, 1999) to prove that the sequence
of potentials V (µ(τ)) converges. Then, using conver-
gence on most days given in Proposition 3, we con-
clude that V (µ(τ)) converges necessarily to the mini-
mum VN , which proves that (µ(τ)) converges to N by
continuity of V on the compact ∆. First, we recall the
definition of Lyapunov function.

Definition 4.3 (Lyapunov function). Let Γ ⊂ ∆ be
a compact invariant set for the replicator ODE (6).
A continuous non-negative function V : ∆ →
R+ is a Lyapunov function for Γ if d

dtV (µ(t)) =
〈∇V (µ(t)), G(µ(t), `(µ(t)))〉 < 0 for all µ(t) /∈ Γ.

Lemma 3 (Convergence of potentials under AREP
algorithms). Let Γ be a compact invariant set for the
replicator ODE (6), V a Lyapunov function for Γ, and
assume V (Γ) has empty interior. Assume that the se-
quence of distributions (µ(τ))τ∈N obeys an AREP up-
date rule. Then the sequence of potentials (V (µ(τ)))τ
converges.

This follows from Theorem 5.7 and Proposition 4.1
in (Benäım, 1999). Here, condition (11) is essential.

Next, we show that the Rosenthal potential function
V is a Lyapunov function for the invariant set RN of
restricted Nash equilibria. From equation (2) and the
definition of G,〈
∇V

(
µ(t)

)
, G(µ(t), `(µ(t)))

〉
=
∑
k

Fk
∑
p∈Pk

`kp(µ(t))µp(t)
(〈

µ(t), `kp(µ(t))
〉
− `kp(µ(t))

)

=
∑
k

Fk

∑
p∈Pk

µp(t)`
k
p(µ(t))

2

−
∑
p∈P

µp(t)`
k
p(µ(t))2


which is less than or equal to 0 by Jensen’s inequality,
with equality if and only if µ ∈ RN . Therefore V is
a Lyapunov function for RN . And since V (RN ) is a
finite set by Remark 1, it has empty interior relatively
to R, and we can apply Lemma 3, and conclude that
the sequence of potentials (V (µ(τ)))τ∈N converges. It
remains to show that its limit is VN .

Since the AREP algorithm is assumed to have sub-
linear discounted regret, we can apply Proposition 3:
there exists a dense subsequence (µ(τ))τ∈T which con-
verges to N . The corresponding subsequence of po-
tentials (V (µ(τ)))τ∈T converges to VN by continuity

of V , and by uniqueness of the limit, we must have
limτ V (µ(τ)) = VN . This concludes the proof.

Corollary 1. If (γτ )τ be a square-summable sequence
bounded by 1/2 satisfying Assumption 2, and (µτ )τ
obeys the REP update rule with rates (γτ ), then (µτ )τ
converges to the set of Nash equilibria.

Proof. Under these assumptions, the REP algorithm
has sublinear discounted regret by Proposition 4. It is
also an AREP algorithm (with zero perturbations) so
we can apply Theorem 2.

Corollary 2. If (γτ )τ is a square-summable sequence
satisfying Assumption 2, and (µτ )τ obeys the dis-
counted Hedge algorithm with rates (γτ ), then (µτ )τ
converges to the set of Nash equilibria.

Proof. By Proposition 2 and Proposition 5, the Hedge
algorithm with rates γτ is an AREP algorithm with
sublinear discounted regret, and we can apply Theo-
rem 2.

Figure 2 shows an example of discounted Hedge al-
gorithm with a non-summable, square-summable se-
quence of learning rates. The resulting strategies con-
verge to the set of Nash equilibria.

5. Conclusion

In order to obtain strong convergence guarantees of
online learning algorithms applied to routing games,
we consider a model in which losses are discounted.
We studied a continuous-time limit of the Hedge al-
gorithm. This motivated the introduction of a class
of no-regret learning algorithms, called AREP, which
can be viewed as approximations of the replicator dy-
namics. Using results from the theory of stochastic
approximation, we showed that under this class, (µ(τ))
is guaranteed to converge to the set of Nash equilibria.

These results assume a universal sequence (γτ )τ of dis-
counts; thus a natural question is whether convergence
still holds if this assumption is relaxed. Another open
question is whether the learning algorithm is robust
to observation noise: if latency observations are noisy,
with bounded noise, can one guarantee convergence if
the bound is small enough?
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