
On Learning How Players Learn:
Estimation of Learning Dynamics in the Routing Game

Kiet Lam
UC Berkeley

kiet.lam@berkeley.edu

Walid Krichene
UC Berkeley

walid@eecs.berkeley.edu

Alexandre Bayen
UC Berkeley

bayen@berkeley.edu

ABSTRACT
The routing game models congestion in transportation
networks, communication networks, and other cyber phys-
ical systems in which agents compete for shared re-
sources. We consider an online learning model of player
dynamics: at each iteration, every player chooses a route
(or a probability distribution over routes, which corre-
sponds to a flow allocation over the physical network),
then the joint decision of all players determines the costs
of each path, which are then revealed to the players.

We pose the following estimation problem: given a se-
quence of player decisions and the corresponding costs,
we would like to estimate the learning model parame-
ters. We consider in particular entropic mirror descent
dynamics, reduce the problem to estimating the learn-
ing rates of each player.

We demonstrate this method using data collected from
a routing game experiment, played by human partic-
ipants: We develop a web application to implement
the routing game. When players log in, they are as-
signed an origin and destination on the graph. They can
choose, at each iteration, a distribution over their avail-
able routes, and each player seeks to minimize her own
cost. We collect a data set using this interface, then ap-
ply the proposed method to estimate the learning model
parameters. We observe in particular that after an ex-
ploration phase, the joint decision of the players remains
within a small distance of the Nash equilibrium. We also
use the estimated model parameters to predict the flow
distribution over routes, and compare these predictions
to the actual distribution. Finally, we discuss some of
the qualitative implications of the experiments, and give
directions for future research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

1. INTRODUCTION
The routing game is a non-cooperative game that mod-

els congestion in many cyber physical systems (CPS)
in which non-cooperative agents compete for shared re-
sources, such as transportation networks (the resources
being roads) and communication networks (the resources
being communication links) [4, 27, 25]. The game is
played on a directed graph that represents the network,
and each player is given by a source node and desti-
nation node, and seeks to send traffic (either packets
in a communication setting, or cars in a transportation
setting) while minimizing the total delay of that traf-
fic. The delay is determined by the joint decision of all
players, such that whenever an edge has high load, it be-
comes congested and any traffic using that edge incurs
additional delay, defined by a congestion function that
models the underlying physical process. This model of
congestion is simple yet powerful, and routing games
have been studied extensively since the seminal work of
Beckman [4].

1.1 Learning models and convergence to Nash
equilibria

The Nash equilibria of the game are simple to charac-
terize, and have been used to quantify the inefficiency
of the network, using the price of anarchy [27]. How-
ever, the Nash equilibrium concept may not offer a good
descriptive model of actual behavior of players. Be-
sides the assumption of rationality, which can be ques-
tioned [29], the Nash equilibrium assumes that players
have a complete description of the structure of the game,
their own cost functions, and those of other players.
This model is arguably not very realistic for the routing
game, as one does not expect users of a network to have
an accurate representation of the cost function on every
edge of the network, or of the other users of the net-
work. One alternative to the Nash equilibrium concept
as a descriptive model of players is a model of repeated
play [23, 12], sometimes called learning models [10] or
adjustment models [14]. In such models, one assumes
that each player makes decisions iteratively, and uses



the outcome of each iteration to adjust their next deci-

sion. Formally, if x
(t)
k is the decision of player k at iter-

ation t, and `
(t)
k is the corresponding vector of costs (de-

lays), then player k faces a sequential decision problem

in which she iteratively chooses x
(t)
k then observes `

(t)
k .

These sequential decision problems are coupled through

the cost functions, since `
(t)
k depends not only on x

(t)
k

but also on x
(t)
k′ for k′ 6= k (but players do not neces-

sarily model this coupling). Such models have a long
history in game theory, and date back to the work of
Hannan [15] and Blackwell [5]. In recent years, there
has been a resurgence of research on the topic of learn-
ing in games using sequential decision problems, see for
example [10] and references therein.

When designing a model of player decisions, many
properties are desirable. Perhaps the most important
property is that the dynamics should be consistent with
the equilibrium of the game, in the following sense:
Asymptotically, one should expect the learning dynam-
ics to converge to the equilibrium of the full information,
one-shot game (be it Nash equilibrium or other, more
general equilibrium concepts). In this sense, players
“learn” the equilibrium asymptotically. Much progress
has been made in recent years in characterizing classes
of learning dynamics which are guaranteed to converge
to an equilibrium set [13, 17, 16, 12]. In particular for
the routing game, different models of learning have been
studied for example in [11, 6, 19, 21, 20], with different
convergence guarantees.

1.2 A mirror descent model of learning
We will focus in particular on the mirror descent model

used in [22], since it offers a large family of models that
have strong convergence guarantees to Nash equilibria.
This model describes the learning dynamics as solving,
at each step, a simple minimization problem parame-
terized by a learning rate η. Formally, the decision at
iteration t+ 1 is obtained by solving

x
(t+1)
k (η

(t)
k ) = arg min

xk∈∆Ak

η
(t)
k

〈
`
(t)
k , x

〉
+Dψk(xk, x

(t)
k ),

where ψk is a distance generating function with corre-

sponding Bregman divergence Dψk , and η
(t)
k is a learn-

ing rate. Intuitively, minimizing the first term
〈
`
(t)
k , x

〉
will assign traffic to the routes which currently have

minimal cost, and minimizing the second termDψk(xk, x
(t)
k )

will keep the traffic at its current value. Minimizing the
linear combination trades-off both terms, and the learn-

ing rate η
(t)
k determines how aggressive the player is in

updating her strategy: A small learning rate results in

a small change in strategy (i.e. x
(t+1)
k is close to x

(t)
k ),

while a large learning rate results in a significant change.

1.3 Estimating the learning rates
Motivated by this interpretation of the learning dy-

namics, we propose the following estimation problem:

Given a sequence of player decisions (x
(t)
k ), and the se-

quence of corresponding costs (`
(t)
k ), can we estimate

the learning model parameters to fit these observations?
These quantities are effectively measured in our exper-
imental setting using the routing interface, and can be
measured on transportation networks using existing traf-
fic monitoring and forecasting systems, such as the Mo-
bile Millennium system [2] or the Grenoble Traffic Lab [8].

Our proposed approach is to assume that the player
is using a given distance generating function ψk, and
estimate ηk for example by minimizing the distance be-

tween the observed decision x̄
(t+1)
k , and the decision pre-

dicted by the model, x
(t+1)
k (η

(t)
k ). More precisely, we can

choose η
(t)
k to minimize Dψk(x̄

(t+1)
k , x

(t+1)
k (η

(t)
k )). We

show that in the entropic case (when ψk is the negative

entropy), this problem is convex, thus η
(t)
k can be esti-

mated efficiently e.g. by using gradient descent. This

method allows us to estimate one parameter η
(t)
k per it-

eration t and per player k. When we have a sequence of
observations available, it can be desirable to control the
complexity of the model by assuming a parameterized
sequence of learning rates, instead of estimating each
term separately. Thus, we propose a second method
which assumes that the learning rate is of the form

η
(t)
k = η

(0)
k t−αk , with αk ∈ (0, 1). The resulting esti-

mation problem is non-convex in general, but since it
is a two dimensional problem, it can be minimized ef-
ficiently. Finally, we consider a family of distance gen-
erating functions ψε, parameterized by ε, that can be
viewed as a generalization of the negative entropy func-
tion. These generalized entropy functions have desirable
properties that will be discussed in more detail.

1.4 Summary of contributions and organiza-
tion of the article

Our main contributions are to

1. Pose the learning rate estimation problem, and
show that it is convex problem in the entropic case. We
also give an example application of the estimated model:
It can be used to predict the decision of the players over
the next few iterations, by propagating the model for-
ward with the estimated values of the parameters.

2. Develop a routing game system in order to collect
data on routing decisions. We developed a web inter-
face in which a master user can create an instance of the
routing game by defining a graph and cost functions on
edges of the graph. Then other users can connect to the
interface as players. The game then proceeds similarly
to our learning model: At each iteration, every player



chooses a flow distribution on their available routes (us-
ing a graphical user interface with sliders), then their
decisions are sent to a backend server, which computes
the total cost of each route, and sends this information
back to each player.

3. Apply the proposed methods to the data collected
from the routing game system, and give quantitative
and qualitative insights into the decision dynamics of
human players. In particular, we observed that in the
first few iterations, the flow distributions oscillate, which
corresponds to a high value of estimated learning rates.
For later iterations, the flow distributions are, in gen-
eral, close to equilibrium, and the learning rates are
lower, although some players may occasionally move the
system away from equilibrium by performing an aggres-
sive update (high learning rate). It was also interesting
to observe that in some rare cases, the estimate of the
learning rate is negative, which means that the player
updated her strategy by assigning more traffic to routes
with higher cost, a counter-intuitive behavior which is
hard to model. Finally, we comment on the performance
of the prediction over a short horizon, which seems to
indicate that the mirror descent model is a good de-
scriptive model for player behavior in this setting.

The remainder of the article is organized as follows:
In Section 2, we formally define the routing game and
review the characterization of its equilibria, then define
the mirror descent dynamics and review its convergence
guarantees. In Section 3, we pose the learning rate es-
timation problem in the entropy case, then extend it to
the generalized entropy case. We also briefly discuss the
traffic prediction problem. In Section 4, we describe the
experimental setting, some implementation details, and
the nature of the collected data. We then use this data
to run the estimation and prediction tasks in Section 5,
comment on the quality of the prediction, and give some
qualitative and quantitative insights into the decision
dynamics. We conclude in Section 6 by summarizing
our results and giving directions for future research.

2. THE ROUTING GAME AND THE LEARN-
ING MODEL

In this section, we give the definition of the (one-shot)
routing game, and the model of learning dynamics.

2.1 The routing game
The routing game is played on a directed graph G =

(V,E), where V is a vertex set and E ⊂ V × V is an
edge set. The players will be indexed by k ∈ {1, . . . ,K},
where every player is given by an origin vertex ok ∈ V ,
a destination vertex dk ∈ V , and a traffic mass mk ≥ 0
that represents the total traffic that the player needs to
send from ok to dk. The set of available paths connect-

ing ok to dk will be denoted by Pk, and the action set
of player k is simply the probability simplex over Pk,
which we denote by ∆Pk = {x ∈ RPk+ :

∑
p∈Pk xp = 1}.

In other words, each player chooses a distribution over
their available paths, and their traffic is allocated to
paths according to that distribution. We will denote by
xk ∈ ∆Pk the distribution of player k. Note that xk is
a distribution vector, so the vector of actual flows is the
scaled vector mkxk. The joint decision of all players is
denoted by x = (x1, . . . , xK). The costs of the players
are then determined as follows:

a) The cost on an edge e is ce(φe(x)), where ce(·) is
a given, increasing function (this models the actual cost
due to the physical process, for example delay on a road
segment due to accumulation of cars), and φe(x) is the
total traffic flow on edge e induced by the distribution
x, obtained simply by summing all the path flows that
go through that edge, i.e. φe(x) =

∑
k

∑
p∈Pk mkxk,p.

b) The cost on a path p ∈ Pk is denoted by `k,p(x),
and is the sum of edge costs along the path, i.e. `k,p(x) =∑
e∈p ce(φe(x)).

c) The cost for player k is the total path cost for all
the traffic sent by player k, i.e.

∑
p∈Pk mkxk,p`k,p(x).

This is simply the inner product between the flow vector
mkxk and the path delay vector `k(x), which we denote
by 〈`k(x), xk〉.
Remark 1 (A note on the player model) Some for-
mulations of the routing game, e.g. [28, 21], define the
game in terms of populations of players, such that each
population is an infinite set of players with the same ori-
gin and destination. This assumes that each player con-
tributes an infinitesimal amount of flow, so each player
can play a single path. In our model, each player is
macroscopic, and can split its traffic across multiple routes.
Both models are equivalent in terms of analysis, the only
difference is the interpretation of the model. We choose
the finite player interpretation because it is more consis-
tent with the experimental section of the article, where
we run the game with finitely many players.

Definition 1 (Nash equilibrium) A distribution x? =
(x?1, . . . , x

?
K) is a Nash equilibrium if it satisfies the fol-

lowing condition: For all other feasible distributions x =
(x1, . . . , xK) and for all k, 〈`k(x?), xk − x?k〉 ≥ 0.

In words, x? is a Nash equilibrium if for every player k,
the expected cost under x?k is lower than the expected
cost under any other distribution xk. If we define the in-
ner product 〈x, `〉 =

∑
k 〈xk, `k〉, then this is equivalent

to: x? is an equilibrium if and only if 〈`(x?), x− x?〉 ≥ 0
for all feasible x. This variational inequality is, in fact,
equivalent to the first-order optimality condition of the
following potential function, usually referred to as the
Rosenthal potential, in reference to [26]:



Proposition 1 (Existence of a convex potential)
Consider a routing game and define the following func-

tion f(x) =
∑
e∈E

∫ φe(x)

0
ce(u)du. Then f is convex its

gradient is ∇f(x) = `(x).

This result can be found for example in [27]. Due to the
fact that the delay function `(·) coincides with the gra-
dient field ∇f(·) of the Rosenthal potential, the Nash
condition can be rewritten as 〈∇f(x?), x− x?〉 ≥ 0 for
all feasible x, and since f is convex, this is a neces-
sary and sufficient condition for optimality of x? (see
e.g. Section 4.2.3 in [7]). Therefore the set of Nash
equilibria is exactly the set of minimizers of the convex
potential f . This is important both for computation
(computing a Nash equilibrium can be done by mini-
mizing a convex function), and for modeling: One can
model player dynamics as performing a distributed op-
timization of the potential function. More precisely, if
we adopt the point of view presented in the introduc-
tion, in which each player faces a sequential decision

problem, and plays x
(t)
k then observes `k(x(t)), then this

corresponds to a first-order distributed optimization of
the function f , where each player is responsible for up-

dating the variables x
(t)
k , and observes, at each itera-

tion, the partial gradient `k(x(t)) = ∇xkf(x(t)). Using
this connection to distributed optimization, a model of
player dynamics was proposed in [22]. We review the
model in the next Section.

2.2 The learning model: Mirror descent dy-
namics

We will consider the model of distributed learning pro-
posed in [22]. Each player is assumed to perform a mir-
ror descent update given by the following algorithm:

Algorithm 1 Distributed mirror descent dynamics with DGF

ψk and learning rates (η
(t)
k ).

1: for each iteration t ∈ {1, 2, . . . } do
2: for each player k ∈ {1, . . . ,K} do

3: Play x
(t)
k ,

4: Observe `
(t)
k = ∇xkf(x(t)),

5: Update distribution

x
(t+1)
k = arg min

xk∈∆Pk

[
η

(t)
k

〈
`k(x(t)), xk

〉
+Dψk (xk, x

(t)
k )

]
(1)

In the update equation (1), Dψk(xk, x
(t)
k ) is the Breg-

man divergence between the distributions xk and x
(t)
k ,

defined as Dψ(x, y) = ψ(x)−ψ(y)−〈∇ψ(y), x− y〉, for
a strongly convex function ψ, called the distance gener-
ating function (DGF), see for example [9, 1] for a review
of Bregman divergences and their uses in optimization.
Some special cases include:

a) The Euclidean case: If ψ(x) =
‖x‖22

2 , thenDψ(x, y) =

‖x−y‖22
2 . In this case, mirror descent reduces to the pro-

jected gradient descent algorithm.

b) The entropic case: If ψ(x) = −H(x) where H(x) =
−∑p xp lnxp is the negative entropy, then Dψ(x, y) =∑
p xp ln

xp
yp

is the Kullback-Leibler (KL) divergence from

x to y. In this case, the mirror descent algorithm is
sometimes called the entropic descent [3], or exponenti-
ated gradient descent [18].

The mirror descent method is a general method for con-
vex optimization proposed in [24]. The model in Algo-
rithm 1 is a distributed version of mirror descent, ap-
plied to the potential function f (defined in Proposi-
tion 1). To give some intuition of the method, the first

term
〈
`
(t)
k , xk

〉
in the minimization problem (1) can be

thought of as a linear approximation of the potential
function (since `(x) = ∇f(x)), and the second term

Dψ(xk, x
(t)
k ) penalizes deviations from the previous it-

erate x
(t)
k . The learning rate η

(t)
k determines the tradeoff

between the two terms, and can be thought of as a gen-

eralized step size: A smaller η
(t)
k results in a distribu-

tion which is closer to the current x
(t)
k . Thus, from the

potential function point of view, the player minimizes a
linearization of the potential plus a Bregman divergence

term that keeps xk close to x
(t)
k . From the routing game

point of view, the first term
〈
`
(t)
k , xk

〉
corresponds to

putting weight on the paths that have smaller cost dur-
ing the previous iteration, and the second term keeps
the distribution close to its current value. The learn-
ing rate parameter η

(t)
k determines how aggressive the

player is in shifting traffic to the paths which appear to
be the best.

The convergence of this distributed learning model is
discussed in [22]. The learning dynamics given in Algo-
rithm 1 is guaranteed to converge under the following
assumptions:

Theorem 1 (Theorem 3 in [22]) Consider the rout-
ing game with mirror descent dynamics defined in Al-

gorithm 1, and suppose that for all k, η
(t)
k is decreasing

to 0. Then f(x(t))−f(x?) = O
(∑

k
1

tη
(t)
k

+
∑t
τ=1 η

(τ)
k

t

)
.

In particular, if η
(t)
k = η

(0)
k t−αk , with αk ∈ (0, 1), then

one can bound the sum
∑t
τ=1 η

(t)
k = η

(0)
k

∑t
τ=1 τ

−αk ≤
η

(0)
k

∫ t
0
τ−αkdτ =

η
(0)
k

1−αk t
1−αk . Therefore, f(x(t))−f(x?) =

O(tαk−1) + O(t−αk) = O(t−min(αk,1−αk)), which con-
verges to 0. While this specific convergence rate does
not matter for the purposes of the estimation problem,
the convergence guarantees for decaying learning rates
motivates the modeling assumptions made in the next
section.



3. LEARNING MODEL ESTIMATION
In this section, we assume that we have access to a se-

quence of observations of traffic distributions (x̄
(t)
k ), and

a sequence of delay vectors (¯̀(t)
k ), for a given player k.

The over bar is used to make a clear distinction between
quantities which are observed (e.g. x̄

(t)
k ) and quantities

which are estimated or predicted (e.g. x
(t)
k ). Given this

sequence of observations, we would like to fit a model
of learning dynamics. From the previous section, the
learning model in Algorithm 1 is naturally parameter-
ized by the DGF ψk and the learning rate sequence

(η
(t)
k ). We will assume that the DGF is given, and dis-

cuss how one can estimate the learning rates.

3.1 Estimating a single term of the learning
rates sequence

Given the current flow distribution x̄
(t)
k and the cur-

rent delay vector ¯̀(t)
k , the mirror descent model pre-

scribes that the next distribution is given by

x
(t+1)
k (η) = arg min

x∈∆Pk

η
〈

¯̀(t)
k , xk

〉
+Dψk(xk, x̄

(t)
k ), (2)

where ψk is given. Therefore, x
(t+1)
k can be viewed as

a function of η, (hence the notation x
(t+1)
k (η)) and to

estimate η, one can minimize

d
(t)
k (η) = Dψk(x̄

(t+1)
k , x

(t+1)
k (η)).

The problem is then simply

η
(t)
k = arg min

η≥0
d

(t)
k (η). (3)

In the next proposition, we show that this problem is
convex when the DGF is the negative entropy. In fact,
one can explicitly compute the gradient of dk(η) in this
case, which makes it possible to solve Problem (3) effi-
ciently using gradient descent for example.

Theorem 2 If ψk is the negative entropy, then d
(t)
k (η) =

Dψk(x̄
(t+1)
k , x

(t+1)
k (η)) is a convex function of η, and its

gradient with respect to η is given by

d

dη
d

(t)
k (η) =

〈
¯̀(t)
k , x̄

(t+1)
k − x(t+1)

k (η)
〉
.

Proof. When ψk is the negative entropy, the solu-
tion of the mirror descent update (2) can be computed
in closed form, and is given by

x
(t+1)
k,p (η) =

x̄
(t)
k,pe

−η ¯̀(t)
k,p

Z
(t)
k (η)

(4)

where Z
(t)
k (η) is the appropriate normalization constant,

given by Z
(t)
k (η) =

∑
p x̄

(t)
k,pe

−η ¯̀(t)
k,p , see for example [3]

for a proof of this result. Given this expression of x
(t+1)
k (η),

we can explicitly compute the Bregman divergence (which,
in this case, is the KL divergence):

dk(η) = DKL(x̄
(t+1)
k , x

(t+1)
k (η))

=
∑
p∈Pk

x̄
(t+1)
k,p ln

x̄
(t+1)
k,p

x
(t+1)
k,p (η)

=
∑
p∈Pk

x̄
(t+1)
k,p

(
ln
x̄

(t+1)
k,p

x̄
(t)
k,p

+ η ¯̀(t)
k,p + lnZ

(t)
k (η)

)

= DKL(x̄
(t+1)
k , x̄

(t)
k ) + η

〈
¯̀(t)
k , x̄

(t+1)
k

〉
+ lnZ

(t)
k (η),

where we used the explicit form (4) of x
(t+1)
k (η) in the

third equality, and the fact that
∑
p x̄

(t+1)
k,p = 1 in the

last equality. In this expression, the first term does not
depend on η, the second term is linear in η, and the last

term is the function η 7→ lnZ
(t)
k (η) = ln

∑
p x̄

(t)
k,pe

−η ¯̀(t)
k,p ,

which is known to be convex in η (see for example Sec-

tion 3.1.5 in [7]). Therefore d
(t)
k (η) is convex, and its

gradient can be obtained by differentiating each term

d

dη
d

(t)
k (η) =

〈
¯̀(t)
k , x̄

(t+1)
k

〉
+

d
dηZ

(t)
k (η)

Z
(t)
k (η)

=
〈

¯̀(t)
k , x̄

(t+1)
k

〉
+

∑
p−¯̀(t)

k,px̄
(t)
k,pe

−η ¯̀(t)
k,p

Z
(t)
k (η)

=
〈

¯̀(t)
k , x̄

(t+1)
k

〉
−
〈

¯̀(t)
k , x

(t+1)
k (η)

〉
,

which proves the claim.

While we cannot prove that the problem is convex in
the general case (when ψk is any DGF), since the prob-
lem is one-dimensional, one can apply any non-convex
optimization method, such as simulated annealing, to

find a local optimum of d
(t)
k (η).

3.2 Estimating the decay rate of the learning
rate sequence

In the previous section, we proposed a method to esti-
mate one term of the learning rate sequence. One can of
course repeat this procedure at every iteration, thus gen-
erating a sequence of estimated learning rates. However,
the resulting sequence may not be decreasing. In order
to be consistent with the assumptions of the model, we
can assume a parameterized sequence of learning rates
(which is by construction decreasing), then estimate the
parameters of the sequence, given the observations. Mo-
tivated by Theorem 1, we will assume, in this section,

that η
(t)
k = η

(0)
k t−αk with η

(0)
k > 0 and αk ∈ (0, 1).

Given the observations (x̄
(t)
k ) and (¯̀(t)

k ), we can define



a cumulative cost,

D
(t)
k (αk, η

(0)
k ) =

t∑
τ=1

d
(τ)
k (η

(0)
k τ−αk),

then estimate (αk, η
(0)
k ) by solving the problem

(αk, η
(0)
k ) = arg min

αk∈(0,1),η(0)≥0

D
(t)
k (α, η(0)). (5)

Note that this problem is non-convex in general, how-
ever, since it is low-dimensional (two parameters to esti-
mate), it can also be solved efficiently using non-convex
optimization techniques.

3.3 A parameterized family of distance gener-
ating functions

In this section, we propose to use a generalization of
the entropy DGF, motivated by the following observa-
tion: according to the entropy update and its explicit

solution (5), the support of x
(t+1)
k (η) always coincides

with the support of x̄
(t)
k (due to the multiplicative form

of the solution). As a consequence, if we observe two

consecutive terms x̄
(t)
k , x̄

(t+1)
k such that some p is in the

support of x̄
(t+1)
k but not in the support of x̄

(t)
k , the

KL divergence DKL(x̄
(t+1)
k , x

(t+1)
k (η)) is infinite for all

η, since support(x̄(t+1)) 6⊂ support(x
(t+1)
k (η)) (in mea-

sure theoretic terms, x̄(t+1) is not absolutely continuous

with respect to x
(t+1)
k (η)). This is problematic, as the

estimation problem is ill-posed in such cases (which do
occur in the data set used in Section 5). To solve this
problem, we consider the following DGF: For ε > 0, let

ψε(xk) = −H(x+ ε) =
∑
p

(xk,p + ε) ln(xk,p + ε).

The corresponding Bregman divergence is

Dψε(xk, yk) =
∑
p

(xk,p + ε) ln
xk,p + ε

yk,p + ε
,

and can be interpreted as a generalized KL divergence.
In particular, for any ε > 0, this Bregman divergence is
finite for any xk, yk ∈ ∆Pk , unlike the KL divergence.
Additionally, the support is not necessarily preserved.
Finally, it is worth observing that when ε > 0, the up-
date equation (1) does not have a closed-form expression
as in (4). In our numerical simulations in Section 5, we
use the generalized entropy DGF proposed here.

3.4 Traffic flow prediction
We discuss one important application of the proposed

estimation problem. Once we have estimated the learn-
ing rates, we can propagate the model forward in order
to predict the distributions of the players for the next
time step. More precisely, if at iteration t, we have

observed x̄(t), ¯̀(t), and we have estimated the terms

(η
(1)
k , . . . , η

(t−1)
k ) for a player k, then we can use these

terms to estimate η
(t)
k , and predict the next distribution

by solving

x
(t+1)
k = arg minxk ∈ ∆Pk

〈
η

(t)
k , `(x̄

(t)
k )
〉

+Dψk(xk, x̄
(t)
k )

∆
= g(x̄

(t)
k , η

(t)
k ),

where we defined the function g, which takes a distri-
bution and a learning rate and propagates the model
forward one step. We can inductively estimate the next
terms by propagating the model further over a horizon

h: let x
(t)
k = x̄

(t)
k and for i ∈ {0, . . . , h− 1},

x
(t+i+1)
k = g(x

(t+i)
k , η

(t+i)
k ). (6)

Here, we assume that we can extrapolate the learning

rate sequence to estimate the terms η
(t+i)
k . If we assume

a particular form of the sequence, η
(t)
k = η

(0)
k t−αk , then

this can be done readily once we have an estimate of

η
(0)
k and αk. However, if each term of the sequence is

estimated separately, we need to use a model to predict
the next terms. We propose these simple methods that
are evaluated in Section 5:

1. First, as baseline method, we set η
(t+i)
k = η

(t−1)
k

for all i (we use the last estimated value).

2. Second, we set η
(t+i)
k = 1

N

∑N
n=1 η

(t−n)
k for all i (we

use the mean of the last N values).
3. Third, we assume a polynomial decay of the form

η
(t)
k = η

(0)
k t−αk , and estimate αk, η

(0)
k by performing

a linear regression on (ln τ, ln η
(τ)
k ) (since the model is

linear in logarithmic scale).

We conclude this section by observing that while we
chose to apply the model to a simple prediction task, the
estimated model can be used, more generally, in any a
receding-horizon optimal control problem, by using the
current estimate of the model as a plant in the control
problem.

4. THE ROUTING GAME WEB APPLICA-
TION

We developed a web application that implements the
repeated routing game described in Section 2. The gen-
eral architecture of the system is summarized in Fig-
ure 2. It consists of a client interface that is used by
human participants, shown in Figure 1, and a backend
server that is responsible for collecting inputs from the
clients, updating the state of the game, then broadcast-
ing current information to each player.

A root user can set up the game by creating a graph
and defining the cost functions on each edge. Then once
a game is set up, players can log in to the client interface,
and each player is assigned an arbitrary origin node and



Figure 1: Screenshot of the client side of the routing game application. The table is the main interface on

the client side, and can be used by the player to set weights on the different paths, using the sliders. The

weights determine the flow distribution x̄
(t+1)
k . The table also show the previous flows (x

(t)
k ), the previous costs

(¯̀(t)
k ), and the cumulative costs L̄

(t)
k =

∑
τ≤t

¯̀(τ)
k . Clicking a path will also highlight the path on the graph. The

bottom charts show the full history of flows, costs, and cumulative losses.

Server
x̄(t)

x̄
(t)
1

(¯̀(t)
1 , ¯̀(t−1)

1 , . . . )

x̄
(t)
2

x̄
(t)
3

(¯̀(t)
2 , ¯̀(t−1)

2 , . . . )

(¯̀(t)
3 , ¯̀(t−1)

3 , . . . )

Figure 2: General architecture of the system. Dur-

ing iteration t, the clients input the current values

of the distributions x̄
(t)
k and send them to the server.

At the end of the iteration, the server uses these

values to compute the cost functions ¯̀(t)
k and sends

them back to the clients.

destination node on the graph. Once the game starts,
it is played in iterations, such that each iteration lasts
a specified period of time shown by the timer on top
of the client interface (each iteration lasts 30 seconds in
our experiments). Each player k can use the sliders to

set her flow distribution x
(t)
k during iteration t. At the

end of the iteration, the server uses the values of x
(t)
k for

all players k ∈ {1, . . . ,K} to compute the cost functions

`
(t)
k , then sends this information to the client side, which

then updates the charts and the table with the last value
of the cost. Note that client k only has access to the
information about player k, so in this sense, the learning
is completely distributed, as players do not observe the
decision or the costs of other players. The decisions of

the players (x̄
(t)
k ) and the costs (¯̀(t)

k ) are logged by the
server, with no additional identifiable information about
the players.

The code for the web application is available on Github
at the following url: github.com/kietdlam/routing.
To illustrate the methods proposed in this article, we
ran the experiment on a small network (shown in the
interface in Figure 1), with 5 players. The numerical
results are discussed in the next section.

5. EXPERIMENTAL RESULTS
We use the data set collected by the experiment to

illustrate the estimation and prediction problems pro-
posed in Section 3, and give some comments on the de-
cision dynamics of the players.

5.1 Distance to equilibrium
First, we evaluate whether the (distributed) decisions

of the players converges to the Nash equilibrium of the
game. The distance to equilibrium can be measured
simply by the Rosenthal potential defined in Proposi-
tion 1. Figure 3 shows the potential f(x(t)) − f(x?) as
a function of iteration t, as well as the corresponding



0 5 10 15 20 25 30

Game iteration

18

19

20

21

22

23

24

25

f
(x

(t
) )
−

f
(x

⋆
) Exploration Convergence

f(x(t))− f(x⋆)

f(x(t))− f(x⋆) minimum

5 10 15 20 25 30

Game iteration

0.1

0.2

0.3

0.4

0.5

0.6

F
lo

w
di

st
ri

bu
ti

on
x
(t
)

k

Player exploring

Close to equilibrium
Perturbation

0 5 10 15 20 25 30

Game iteration

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

N
or

m
al

iz
ed

co
st

〈x
(t
)

k
,ℓ
(t
)

k
〉

〈x
⋆ k
,ℓ
⋆ k
〉 Exploration Convergence

Player 1
Player 2
Player 3
Player 4
Player 5

Figure 3: Exploration and convergence to equilibrium. The left figure shows the distance to equilibrium,

measured by the Rosenthal potential f(x(t))− f(x?) as a function of iteration t, where x(t) = (x
(t)
1 , . . . , x

(t)
K ) is the

joint decision of all players. The middle figure shows the flow distribution for a given player, and the right

plot shows the costs of all players, normalized by the equilibrium costs (so that their values are comparable).

player costs
〈
`
(t)
k , x

(t)
k

〉
of the players. We can observe

that at the beginning of the game, there is a clear explo-
ration phase in which players tend to make aggressive
adjustments in their distributions, while during later
turns, the adjustments become less aggressive and the
joint distribution x(t) remains close to equilibrium (as
measured by the potential function f). The system does
move away from equilibrium at some later turns (due to
a player performing an aggressive update, see for ex-
ample turn 22 in Figure 3), but it quickly recovers in
general.

0.0 0.2 0.4 0.6 0.8 1.0

Game iteration

0.0

0.2

0.4

0.6

0.8

1.0

E
st

im
at

ed
di

st
ri

bu
ti

on
s
x
(t
)

k

Actual
Predicted

0 5 10 15 20 25 30
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 5 10 15 20 25 30
0.20
0.22
0.24
0.26
0.28
0.30
0.32
0.34
0.36
0.38

0 5 10 15 20 25 30
0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0 5 10 15 20 25 30
0.14
0.16
0.18
0.20
0.22
0.24
0.26
0.28
0.30
0.32

Figure 4: Comparison of the distributions x
(t)
k of

the estimated model to the actual distributions
x̄

(t)
k , for player k = 2. Each subplot corresponds

to a path.

5.2 Estimation and prediction
We now apply the method proposed in Section 3 to

estimate the learning rates of each player, then use the
estimated rates to predict the decision of the players
over a short horizon. In this section, we take the Breg-
man divergence to be the regularized entropy defined in

Section 3.3, with ε = 10−3.
First, we solve Problem (3) to estimate the learning

rate sequence one term at a time. Figure 4 compares
the estimated distributions by the model, to the actual

distributions. This shows that choosing one value of η
(t)
k

per turn makes it possible to closely fit the observations.

Then, we use the parameterized form η
(t)
k = η

(0)
k t−αk ,

and estimate η
(0)
k and α

(0)
k by solving the problem 5.

The results of both methods are shown in Figure (5)
When we estimate one term at a time, the resulting
sequences have very large variations, and to better vi-
sualize them, we plot a moving average (over a window
of 5 iterations).

It was interesting and perhaps surprising to observe
that when estimating learning rates one term at a time,

in some rare instances, the objective d
(t)
k (η

(t)
k ) is minimal

at a negative η
(t)
k , which means that the player shifted

the probability mass towards paths with higher costs.
One such example is given in the table below.

Path x̄(t) ¯̀(t) x̄(t+1)

p1 .198 6.455 .213
p2 .218 6.037 .240
p3 .280 5.933 .301
p4 .304 6.055 .246

Table 1: Example of an irrational behavior (corre-

sponding to iteration t = 12 for player P2) which is

hard to predict by the model. The inner product〈
¯̀(t)
k , x̄

(t+1)
k − x̄

(t)
k

〉
> 0, which means that the player

shifts probability mass to paths with higher costs (in

particular, the flow on path p1 increased even though

this is the worst path).

Next, we use the estimated learning rates to predict
the distributions of the players over a short horizon
h ∈ {1, . . . , 8}. More precisely, given a horizon h, we
compute, at each iteration t, the estimated learning
rates up to t, then propagate the model forward from t



101

Game iteration

10−3

10−2

10−1

100

101
E

st
im

at
ed

le
ar

ni
ng

ra
te

η
(t
)

k

101

Game iteration

10−2

10−1

100

101

102

E
st

im
at

ed
pa

ra
m

et
er

iz
ed

le
ar

ni
ng

ra
te

Figure 5: Estimated sequences of learning rates in

logarithmic scale. In the top figure, we estimate one

term of the sequence at a time then plot a moving

average with a window length equal to 5. In the

bottom figure, we estimate for each player the initial

term η
(0)
k and the decay rate αk.

to t + h, by iteratively applying the function g defined
in (6).

We evaluate each method by computing the average
Bregman divergence (per player and per iteration) be-

tween the predicted distribution x
(t+h)
k and the actual

distribution x̄
(t+h)
k ,

1

K

K∑
k=1

1

tmax − tmin

tmax−1∑
t=tmin

Dψk(x̄
(t+h)
h , x

(t+h)
k ),

where tmin is taken to be equal to 5 (so that there is al-
ways a minimal history of observations to estimate the
parameters). The results are given in Figure 6. One can
observe that for all methods, as the horizon h increases,
the average divergence increases, since the modeling er-
rors propagate and the quality of our predictions de-
grade. The best overall performance is obtained with

the parameterized model η
(t)
k = η

(0)
k t−αk , although for

h = 1, the best prediction is achieved using the per-

iteration estimate of η
(t)
k .

6. CONCLUSION
We proposed a problem of model estimation in the

routing game, to fit a distributed learning model to se-
quential observations of player decisions. The estimated

1 2 3 4 5 6 7 8

Prediction horizon h

0.0

0.2

0.4

0.6

0.8

1.0

1.2

A
ve

ra
ge

B
re

gm
an

di
ve

rg
en

ce

Parameterized ηt

Previous ηt

Moving average ηt

Linear regression ηt

Figure 6: Average Bregman divergence per player

and per iteration, between the predicted distribu-

tions and the actual distributions, as a function of

the prediction horizon.

model can then be used to predict the decisions at fu-
ture iterations, or, more generally, as a plant model in
an optimal control problem.

We considered in particular a model based on the
mirror descent algorithm, parameterized by a DGF ψk
and a sequence of learning rates (η

(t)
k ), and gave an in-

tuitive interpretation of how this model can describe
player behavior. We showed that the problem of esti-
mating one term of the learning rate sequence is convex
in the case of the KL divergence (it remains open to
prove this result for other Bregman divergences). To
control the complexity of the model and to make the
estimation consistent with the theoretical assumptions
(decreasing learning rates), we proposed to parameterize

the sequence with an initial term η
(0)
k and a decay rate

αk ∈ (0, 1). When we tested these methods on data col-
lected from our routing game interface, the parameter-
ized sequence estimation outperformed the other meth-
ods on the prediction task. Our test results suggest
that the mirror descent model can be a good descriptive
model of player behavior, although in some rare cases, a
player decision can be hard to model (e.g. when a player
increase traffic assignment on previously bad routes).

This estimation problem can be extended in several
ways: First, in our method, we fixed the DGF to be
the negative entropy (regularized in order to avoid sit-
uations in which the estimation problem is ill-posed).
One could also estimate the DGF itself, in addition to
estimating the learning rates. One natural way to pose
the estimation problem is to consider a finite collection
of distance generating functions {ψi}i∈I , then to as-
sume that each player k uses a linear combination with
weights θk ψ =

∑
i θk,iψi, then estimate the parameter

vector θk.



7. REFERENCES
[1] A. Banerjee, S. Merugu, I. S. Dhillon, and

J. Ghosh. Clustering with bregman divergences. J.
Mach. Learn. Res., 6:1705–1749, Dec. 2005.

[2] A. Bayen, J. Butler, A. Patire, CCIT, UC
Berkeley ITS, and California Dpartment of
Transportation, Division of Research and
Innovation. Mobile Millennium Final Report. 2011.

[3] A. Beck and M. Teboulle. Mirror descent and
nonlinear projected subgradient methods for
convex optimization. Oper. Res. Lett.,
31(3):167–175, May 2003.

[4] M. J. Beckmann, C. B. McGuire, and C. B.
Winsten. Studies in the economics of
transportation. 1955.

[5] D. Blackwell. An analog of the minimax theorem
for vector payoffs. Pacific Journal of Mathematics,
6(1):1–8, 1956.

[6] A. Blum, E. Even-Dar, and K. Ligett. Routing
without regret: on convergence to nash equilibria
of regret-minimizing algorithms in routing games.
In Proceedings of the twenty-fifth annual ACM
symposium on Principles of distributed computing,
PODC ’06, pages 45–52, New York, NY, USA,
2006. ACM.

[7] S. Boyd and L. Vandenberghe. Convex
Optimization, volume 25. Cambridge University
Press, 2010.

[8] C. Canudas De Wit, F. Morbidi, L. Leon Ojeda,
A. Y. Kibangou, I. Bellicot, and P. Bellemain.
Grenoble Traffic Lab: An experimental platform
for advanced traffic monitoring and forecasting.
IEEE Control Systems, 35(3):23–39, June 2015.

[9] Y. Censor and S. Zenios. Parallel Optimization:
Theory, Algorithms and Applications. Oxford
University Press, 1997.

[10] N. Cesa-Bianchi and G. Lugosi. Prediction,
learning, and games. Cambridge University Press,
2006.

[11] S. Fischer and B. Vöcking. On the evolution of
selfish routing. In Algorithms–ESA 2004, pages
323–334. Springer, 2004.

[12] M. J. Fox and J. S. Shamma. Population games,
stable games, and passivity. Games, 4(4):561–583,
2013.

[13] Y. Freund and R. E. Schapire. Adaptive game
playing using multiplicative weights. Games and
Economic Behavior, 29(1):79–103, 1999.

[14] D. Fudenberg and D. K. Levine. The theory of
learning in games, volume 2. MIT press, 1998.

[15] J. Hannan. Approximation to Bayes risk in
repeated plays. Contributions to the Theory of
Games, 3:97–139, 1957.

[16] S. Hart. Adaptive heuristics. Econometrica,
73(5):1401–1430, 2005.

[17] S. Hart and A. Mas-Colell. A general class of
adaptive strategies. Journal of Economic Theory,
98(1):26 – 54, 2001.

[18] J. Kivinen and M. K. Warmuth. Exponentiated
gradient versus gradient descent for linear
predictors. Information and Computation,
132(1):1 – 63, 1997.

[19] R. Kleinberg, G. Piliouras, and E. Tardos.
Multiplicative updates outperform generic
no-regret learning in congestion games. In
Proceedings of the 41st annual ACM symposium
on Theory of computing, pages 533–542. ACM,
2009.

[20] S. Krichene, W. Krichene, R. Dong, and
A. Bayen. Convergence of heterogeneous
distributed learning in stochastic routing games.
In 53rd Allerton Conference on Communication,
Control and Computing, 2015.

[21] W. Krichene, B. Drighès, and A. Bayen. Learning
nash equilibria in congestion games. SIAM
Journal on Control and Optimization (SICON),
2015.

[22] W. Krichene, S. Krichene, and A. Bayen.
Convergence of mirror descent dynamics in the
routing game. In European Control Conference
(ECC), 2015.

[23] J. Marden and J. Shamma. Game theory and
distributed control. In H. Young and S. Zamir,
editors, Handbook of Game Theory Vol. 4.
Elsevier Science, 2013.

[24] A. S. Nemirovsky and D. B. Yudin. Problem
complexity and method efficiency in optimization.
Wiley-Interscience series in discrete mathematics.
Wiley, 1983.

[25] A. Ozdaglar and R. Srikant. Incentives and
pricing in communication networks. Algorithmic
Game Theory, pages 571–591, 2007.

[26] R. W. Rosenthal. A class of games possessing
pure-strategy nash equilibria. International
Journal of Game Theory, 2(1):65–67, 1973.

[27] T. Roughgarden. Routing games. In Algorithmic
game theory, chapter 18, pages 461–486.
Cambridge University Press, 2007.

[28] W. H. Sandholm. Potential games with continuous
player sets. Journal of Economic Theory,
97(1):81–108, 2001.

[29] H. A. Simon. A behavioral model of rational
choice. The Quarterly Journal of Economics,
69(1):pp. 99–118, 1955.


	Introduction
	Learning models and convergence to Nash equilibria
	A mirror descent model of learning
	Estimating the learning rates
	Summary of contributions and organization of the article

	The routing game and the learning model
	The routing game
	The learning model: Mirror descent dynamics

	Learning model estimation
	Estimating a single term of the learning rates sequence
	Estimating the decay rate of the learning rate sequence
	A parameterized family of distance generating functions
	Traffic flow prediction

	The Routing Game Web Application
	Experimental Results
	Distance to equilibrium
	Estimation and prediction

	Conclusion
	References

