
Stackelberg Routing on Parallel Transportation
Networks

Walid Krichene, Jack D. Reilly, Saurabh Amin, and Alexandre M. Bayen

Abstract This chapter presents a game theoretic framework for studying Stack-
elberg routing games on parallel transportation networks. A new class of latency
functions is introduced to model congestion due to the formation of physical queues,
inspired from the fundamental diagram of traffic. For this new class, some results
from the classical congestion games literature (in which latency is assumed to be a
non-decreasing function of the flow) do not hold. A characterization of Nash equi-
libria is given, and it is shown, in particular, that there may exist multiple equilibria
that have different total costs. A simple polynomial-time algorithm is provided, for
computing the best Nash equilibrium, i.e. the one which achieves minimal total cost.
In the Stackelberg routing game, a central authority (leader) is assumed to have con-
trol over a fraction of the flow on the network (compliant flow), and the remaining
flow responds selfishly. The leader seeks to route the compliant flow in order to min-
imize the total cost. A simple Stackelberg strategy, the Non-Compliant First (NCF)
strategy, is introduced, which can be computed in polynomial time, and it is shown
to be optimal for this new class of latency on parallel networks. This work is ap-
plied to modeling and simulating congestion mitigation on transportation networks,
in which a coordinator (traffic management agency) can choose to route a fraction
of compliant drivers, while the rest of the drivers choose their routes selfishly.
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1 Introduction

1.1 Motivation and related work

Routing games model the interaction between players on a network, where the cost
for each player on an edge depends on the total congestion of that edge. Exten-
sive work has been dedicated to the study of Nash equilibria for routing games (or
Wardrop equilibria in the transportation literature, Wardrop (1952)), in which play-
ers selfishly choose the routes that minimize their individual costs (latencies) (Beck-
mann et al., 1956; Dafermos and Sparrow, 1969; Dafermos, 1980). In general, Nash
equilibria are inefficient compared to a system optimal assignment that minimizes
the total cost on the network (Koutsoupias and Papadimitriou, 1999). This ineffi-
ciency has been characterized for different classes of latency functions and network
topologies (Roughgarden and Tardos, 2004; Swamy, 2007). This helps understand
the inefficiencies caused by congestion in communication networks and transporta-
tion networks. In order to reduce the inefficiencies due to selfish routing, many
instruments have been studied, including congestion pricing (Ozdaglar and Srikant,
2007; Farokhi and Johansson, 2015), capacity allocation (Korilis et al., 1997b) and
Stackelberg routing (Roughgarden, 2001; Aswani and Tomlin, 2011; Swamy, 2007;
Korilis et al., 1997a).

Online learning and decision dynamics in the routing game

The Nash equilibrium concept gives a characterization of the state of a network at
equilibrium, but does not specify how players arrive to the equilibrium. The study of
decision dynamics provides an answer to this question, and has been a fundamental
topic in economics (Blume, 1993), game theory (Weibull, 1997; Shamma, 2015)
and online learning theory (Cesa-Bianchi and Lugosi, 2006). These models usually
assume that the game is played repeatedly (as opposed to a one-shot game), and
that each player faces a sequential decision problem: At each iteration, the player
takes an action, and observes an outcome (which is also affected by the decisions of
other players). The player can then use the outcome to update her decision on the
next iteration. One of the natural questions that can be studied is whether the joint
player decisions converge to an invariant set (typically, the Nash equilibrium of the
one-shot game, or some other equilibrium concept). This question has a long history
that dates back to Hannan (1957) who defined the regret and Blackwell (1956) who
defined approachability, which became essential tools in the modeling and analysis
of repeated games and convergence of player dynamics.

Decision dynamics have since been studied for several classes of games, such
as potential games (Monderer and Shapley, 1996), and many results provide con-
vergence guarantees under different classes of decision dynamics (Sandholm, 2001;
Hofbauer and Sandholm, 2009; Fox and Shamma, 2013; Benaïm, 2015). Although
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we do not study decision dynamics in this chapter, we review some of the work most
relevant to routing games.

Routing games are a special case of potential games (Sandholm, 2010), and de-
cisions dynamics have been studied in the context of routing games: Blum et al.
(2006) study general no-regret dynamics, Kleinberg et al. (2009) and Krichene et al.
(2015a,b) study other classes of dynamics for which they give stronger convergence
guarantees, and Fischer et al. (2010) studies a similar, sampling-based model. Sev-
eral of these results relate the discrete algorithm to a continuous-time limit known
as the replicator ODE, which is well-studied in evolutionary game theory in gen-
eral (Weibull, 1997), and in routing games in particular (Fischer and Vöcking, 2004;
Drighès et al., 2014). Several studies build on these models of decision dynamics, to
pose and solve estimation and control problems, such as estimating the latency func-
tions on the network (Thai et al., 2015), estimating the learning rates of the dynam-
ics (Lam et al., 2016), and solving optimal routing under selfish response (Krichene
et al., 2016).

Stackelberg routing games

In the Stackelberg routing game, a subset of the players, corresponding to a frac-
tion of the total flow, hereafter called the compliant flow, is centrally assigned by
a coordinator (leader), then the remaining players (followers) choose their routes
selfishly. The objective of the leader is to assign the compliant flow in a manner
that minimizes a system-wide cost function, while anticipating the followers’ self-
ish response. This setting is relevant in the planning and operation of transporta-
tion and communication networks. In transportation networks, advances in traveler
information systems have made it possible to interact with individual drivers and
exchange information through GPS-enabled smartphone applications or vehicular
navigation systems (Work et al., 2010). These devices can be used by a a traffic con-
trol center to provide routing advice that can improve the overall efficiency of the
network. Naturally, the question arises on how the traffic control center should coor-
dinate with the compliant drivers while accounting for the selfish response of other
drivers; hence the importance of the Stackelberg routing framework. One might ar-
gue that the drivers who are offered routing advice are not guaranteed to follow the
suggested routes, especially when these routes do not have minimal latency (in or-
der to improve the system-wide efficiency, some drivers will be assigned routes that
are sub-optimal in the Nash sense). However, in some cases, it can be reasonably
assumed that a fraction of the drivers will choose the routes suggested by the coor-
dinator, despite immediate fairness concerns. For example, some drivers may have
sufficient external incentives to be compliant with the coordinator. In addition, the
compliant flow may also include drivers who care about the system-wide efficiency.

Stackelberg routing on parallel networks has been studied for the class of non-
decreasing latency functions, and it is known that computing the optimal Stack-
elberg strategy is NP-hard (Roughgarden, 2001). This led to the design of polyno-
mial time approximate strategies such as Largest Latency First (Roughgarden, 2001;
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Swamy, 2007). While this class of latency functions provides a good model of con-
gestion for a broad range of networks such as communication networks, it does not
fully capture congestion phenomena in transportation. The main difference is that in
transportation networks, the queuing of traffic results in an increase in density of ve-
hicles (Lebacque, 1996; Daganzo, 1994; Work et al., 2010; Lighthill and Whitham,
1955; Richards, 1956), which in turn affects the latency. This phenomenon is some-
times referred to as horizontal queueing, since the queuing of vehicles takes physical
space, as opposed to vertical queuing, such as queuing of packets in a communica-
tion link, which does not take physical space, and the notion of density is absent.
Several authors have proposed different models of congestion to capture congestion
phenomena specific to horizontal queuing, and characterized the Nash equilibria un-
der these models (Friesz and Mookherjee, 2006; Lo and Szeto, 2002; Wang et al.,
2001; Boulogne et al., 2001). We introduce a new class of latency functions for con-
gestion with horizontal queuing, and study Nash and Stackelberg equilibria under
this class. We restrict our study to parallel networks. Although simple, the parallel
topology can be of practical importance in several situations, such as traffic plan-
ning and analysis. Even though transportation networks are rarely parallel, they can
be approximated by a parallel network, for example by only considering highways
that connect two highly populated areas (Caltrans, 2010). Figure 9 shows one such
network that connects San Francisco to San Jose. We consider this network in Sec-
tion 6.

1.2 Congestion on horizontal queues

The classical model for vertical queues assumes that the latency `n(xn) on a link n
is a non-decreasing function of the flow xn on that link (Roughgarden and Tardos,
2002; Swamy, 2007; Babaioff et al., 2009; Beckmann et al., 1956; Dafermos and
Sparrow, 1969). However, for networks with horizontal queues (Lebacque, 1996;
Lighthill and Whitham, 1955; Richards, 1956), the latency not only depends on the
flow, but also on the density. For example, on a transportation network, the latency
depends on the density of cars on the road (e.g. in cars per meter), and not only on the
flow (e.g. in cars per second), since for a fixed value of flow, a lower density means
higher velocity, hence lower latency. In order to capture this dependence on density,
we introduce and discuss a simplified model of congestion that takes into account
both flow and density. Let ρn be the density on link n, assumed to be uniform, for
simplicity, and let the flow xn be given by a continuous, concave function of the
density

xρ
n : [0,ρmax

n ]→ [0,xmax
n ]

ρn 7→ xn = xρ
n (ρn)

Here, xmax
n > 0 is the maximum flow or capacity of the link, and ρmax

n is the max-
imum density that the link can hold. The function xρ

n is determined by the physi-
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cal properties of the link. It is termed the flux function in conservation law theory
(Evans, 1998; LeVeque, 2007) and the fundamental diagram in traffic flow theory
(Daganzo, 1994; Greenshields, 1935; Papageorgiou et al., 1989). In general, it is a
non-injective function. We make the following assumptions:

• There exists a unique density ρcrit
n ∈ (0,ρmax

n ) such that xρ
n (ρ

crit
n ) = xmax

n , called
critical density. When ρn ∈ [0,ρcrit

n ], the link is said to be in free-flow, and when
ρn ∈ (ρcrit

n ,ρmax
n ), it is said to be congested.

• In the congested regime, xρ
n is continuous decreasing from (ρcrit

n ,ρmax
n ) onto

(0,xmax
n ). In particular, limρn→ρmax

n xρ
n (ρn) = 0 (the flow reduces to zero when

the density approaches the maximum density).

These are standard assumptions on the flux function, following traffic flow the-
ory (Greenshields, 1935; Papageorgiou et al., 1989; Daganzo, 1994). Additionally,
we assume that in the free-flow regime, xρ

n is linearly increasing in ρn, and since
xρ

n (ρ
crit
n ) = xmax

n , we have in the free-flow regime xρ
n (ρn) = xmax

n ρn/ρcrit
n . The as-

sumption of linearity in free-flow is the only restrictive assumption, and it is essen-
tial in deriving the results on optimal Stackelberg strategies. Although somewhat re-
strictive, this assumption is common, and the resulting flux model is widely used in
modeling transportation networks, such as in (Papageorgiou et al., 1990; Daganzo,
1994). Figure 1 shows examples of such flux functions.

Since the density ρn and the flow xn are assumed to be uniform on the link, the
velocity vn of vehicles on the link is given by vn = xn/ρn and the latency is simply
Ln/vn = Lnρn/xn where Ln is the length of link n. Thus to a given value of the flow,
there may correspond more than one value of the latency, since the flux function
is non-injective in general. In other words, a given value xn of flow of cars on a
road-segment can correspond to

• Either a large concentration of cars moving slowly (high density, the road is
congested), in which case the latency is large,

• Or few cars moving fast (low density, the road is in free-flow), in which case the
latency is small.

1.3 Latency function for horizontal queues

Given a flux function xρ
n , the latency can be easily expressed as a non-decreasing

function of the density

`ρ
n : [0,ρmax

n ]→ R+

ρn 7→ `ρ
n (ρn) =

Lnρn

xρ
n (ρn)

(1)

From the assumptions on the flux function, we have:
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• In the free-flow regime, the flux function is linearly increasing, xn(ρn) =
xmax

n
ρcrit

n
ρn.

Thus the latency is constant in free-flow, `ρ
n (ρn)=

Lnρcrit
n

xmax
n

. We will denote its value

by an
∆
= Lnρcrit

n
xmax

n
, called henceforth the free-flow latency.

• In the congested regime, xρ
n is bijective from (ρcrit

n ,ρmax
n ) to (0,xmax

n ). Let

ρ
cong
n : (0,xmax

n )→ (ρcrit
n ,ρmax

n )

xn 7→ ρ
cong
n (xn)

be its inverse. It maps the flow xn to the unique congestion density that corre-
sponds to that flow. Thus in the congested regime, latency can be expressed as
a function of the flow, xn 7→ `

ρ
n (ρ

cong
n (xn)). This function is decreasing as the

composition of the decreasing function ρ
cong
n and the increasing function `

ρ
n .

We can therefore express the latency as a function of the flow in each of the
separate regimes: free-flow (low density) and congested (high density). This leads
to the following definition of HQSF latencies (Horizontal Queues, Single-valued in
Free-flow). We introduce a binary variable mn ∈ {0,1} which specifies whether the
link is in the free-flow or the congested regime.

Definition 1 (HQSF latency class). A function

`n :Dn → R+

(xn,mn) 7→ `n(xn,mn)
(2)

defined on the domain1

Dn = [0,xmax
n ]×{0}∪ (0,xmax

n )×{1}

is a HQSF latency function if it satisfies the following properties:

(A1) In the free-flow regime, the latency `n(·,0) is single-valued (i.e. constant).
(A2) In the congested regime, the latency xn 7→ `n(xn,1) is decreasing on (0,xmax

n ).
(A3) limxn→xmax

n `n(xn,1) = an = `n(xmax
n ,0).

Property (A1) is equivalent to the assumption that the flux function is linear in
free-flow. Property (A2) results from the expression of the latency as the composi-
tion `

ρ
n (ρ

cong
n (xn)), where `ρ

n is increasing, and ρ
cong
n is decreasing. Property (A3) is

equivalent to the continuity of the underlying flux function xρ
n .

Although it may be more natural to think of the latency as a non-decreasing
function of the density, the above representation in terms of flow xn and congestion
state mn will be useful in deriving properties of the Nash equilibria of the routing
game. Finally, we observe, as an immediate consequence of these properties, that the

1 The latency in congestion `n(·,1) is defined on the open interval (0,xmax
n ). In particular, if xn = 0

or xn = xmax
n then the link is always considered to be in free-flow. When the link is empty (xn = 0),

it is naturally in free-flow. When it is at maximum capacity (xn = xmax
n ) it is in fact on the boundary

of the free-flow and congestion regions, and we say by convention that the link is in free-flow.
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ρn

xρn

ρmax
n

xmax
n

ρcritn
ρn

`ρn

an

ρcritn
ρmax
n xn

`n

an
xmax
n

ρn

xρn

ρmax
nρcritn

xmax
n

ρn

`ρn

an

ρcritn
ρmax
n xn

`n

an
xmax
n

ρn

xρn

ρmax
nρcritn

xmax
n

ρn

`ρn

an

ρcritn
ρmax
n xn

`n

an
xmax
n

Fig. 1 Examples of flux functions for horizontal queues (left) and corresponding latency as
a function of the density `

ρ
n (ρn) (middle) and as a function of the flow and the congestion

state `n(xn,mn) (right). The free-flow (respectively congested) regime is shaded in green (respec-
tively red).

latency in congestion is always greater than the free-flow latency: ∀xn ∈ (0,xmax
n ),

`n(xn,1)> an. Some examples of HQSF latency functions (and the underlying flux
functions) are illustrated in Figure 1. We now give a more detailed derivation of a
latency function from a macroscopic fundamental diagram of traffic.

1.4 A HQSF latency function from a triangular fundamental
diagram of traffic

In this section we derive one example of an HQSF latency function `n from the fun-
damental diagram of traffic, corresponding to the top row in Figure 1. We consider a
triangular fundamental diagram, used to model traffic flow for example in (Daganzo,
1994, 1995), i.e. a piecewise affine flux function xρ

n , given by

xρ
n (ρn) =

{
v f

nρn if ρn ∈ [0,ρcrit
n ]

xmax
n

ρn−ρmax
n

ρcrit
n −ρmax

n
if ρn ∈ (ρcrit

n ,ρmax
n ]

The flux function is linear in free-flow with positive slope v f
n called free-flow

speed, affine in congestion with negative slope vc
n

∆
= xmax

n /(ρcrit
n −ρmax

n ), and contin-
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uous (thus v f
nρcrit

n = xmax
n ). By definition, it satisfies the assumptions in section 1.2.

The latency is given by Lnρn/xρ
n (ρn) where Ln is the length of link n. It is then a

simple function of the density

`ρ
n (ρn) =

{Ln

v f
n

ρn ∈ [0,ρcrit
n ]

Lnρn
vc

n(ρn−ρmax
n ) ρn ∈ (ρcrit

n ,ρmax
n ]

which can be expressed as two functions of flow: a constant function `n(·,0) when
the link is in free-flow, and a decreasing function `n(·,1) when the link is congested

`n(xn,0) =
Ln

v f
n

`n(xn,1) = Ln

(
ρmax

n

xn
+

1
vc

n

)

This defines a function `n that satisfies the assumptions of Definition 1, and thus
belongs to the HQSF latency class. Figure 1 shows one example of a triangular
fundamental diagram (top left) and the corresponding latency function `n (top right).

2 Game model and main results

2.1 The routing game

We consider a non-atomic routing game on a parallel network, shown in Figure 2.
Here non-atomic means that the game involves a continuum of players, where each
player corresponds to an infinitesimal (non-atomic) amount of flow, (Roughgarden
and Tardos, 2004; Schmeidler, 1973). The network has a single source and a single

O D
r

1
2
...
N

r

Fig. 2 Network with N parallel links under demand r.

sink. Connecting the source and sink are N parallel links indexed by n ∈ {1, . . . ,N}.
We assume, without loss of generality, that the links are ordered by increasing free-
flow latencies. To simplify the discussion, we further assume that free-flow latencies
are distinct. Therefore we have a1 < a2 < · · · < aN . The network is subject to a
constant positive flow demand r at the source. We will denote by (N,r) an instance
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of the routing game played on a network with N parallel links subject to demand r.
The state of the network is given by a feasible flow assignment vector x ∈ RN

+ such
that ∑

N
n=1 xn = r where xn is the flow on link n, and a congestion state vector m ∈

{0,1}N where mn = 0 if the link is in free-flow and mn = 1 if the link is congested,
as defined above. All physical quantities (density and flow) are assumed to be static
and uniform on the link.

Every non-atomic player chooses a route in order to minimize his/her individual
latency (Roughgarden and Tardos, 2002). If a player chooses link n, his/her latency
is given by `n(xn,mn), where `n is a HQSF latency function. We assume that players
know the latency functions.

Pure Nash equilibria of the game (which we will simply refer to as Nash equilib-
ria) are assignments (x,m) such that every player cannot improve his/her latency by
switching to a different link.

Definition 2 (Nash Equilibrium).
A feasible assignment (x,m) ∈ RN

+×{0,1}N is a Nash equilibrium of the routing
game instance (N,r) if ∀n ∈ supp(x), ∀k ∈ {1, . . . ,N}, `n(xn,mn)≤ `k(xk,mk).

Here supp(x) =
{

n ∈ {1, . . . ,N}|xn > 0
}

denotes the support of x. As a conse-
quence of this definition, all links in the support of x have the same latency `0, and
links that are not in the support have latency greater than or equal to `0. We will
denote by NE(N,r) the set of Nash equilibria of the instance (N,r). We note that
a Nash equilibrium for the routing game is a static equilibrium, we do not model
dynamics of density or flow. Figure 3 shows an example of a routing game instance
and resulting Nash equilibria.

xn

`n

a1

a2

a3

xn

`n

a1

a2

a3

Fig. 3 Example of Nash equilibria for a three-link network. One equilibrium (left) has one link in
free-flow and one congested link. A second equilibrium (right) has three congested links.

While a Nash equilibrium achieves minimal individual latencies, it does not min-
imize, in general, the system cost or total cost defined as follows:
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Definition 3. The total cost of an assignment (x,m) is the total latency experienced
by all players

C(x,m) =
N

∑
n=1

xn`n(xn,mn). (3)

As detailed in Section 3, under the HQSF latency class, the routing game may
have multiple Nash equilibria that have different total costs. We are interested, in
particular, in Nash equilibria that have minimal cost, which are referred to as best
Nash equilibria (BNE).

Definition 4 (Best Nash Equilibria). The set of best Nash equilibria is the set of
equilibria that minimize the total cost, i.e.

BNE(N,r) = argmin
(x,m)∈NE(N,r)

C(x,m). (4)

2.2 Stackelberg routing game

In the Stackelberg routing game, a coordinator (a central authority) is assumed to
have control over a positive fraction α of the total flow demand r. We call α the
compliance rate. The coordinator wants to route the compliant flow αr in a way
that minimizes the system cost, while anticipating the response of the rest of the
players, assumed to choose their routes selfishly after the strategy of the coordinator
is revealed. We will refer to the flow of selfish players (1−α)r as the non-compliant
flow. More precisely, the game is played as follows:

• First, the coordinator (the leader) chooses a Stackelberg strategy, i.e. an assign-
ment s ∈ RN

+ of the compliant flow (such that ∑
N
n=1 sn = αr).

• Then, the Stackelberg strategy s of the leader is revealed, and the non-compliant
players (followers) choose their routes selfishly and form a Nash equilibrium
(t(s),m(s)), induced2 by strategy s. By definition, the induced equilibrium (t(s),m(s))
satisfies

∀n ∈ supp(t(s)) , ∀k ∈ {1, . . . ,N},
`n(sn + tn(s),mn(s))≤ `k(sk + tk(s),mk(s)) (5)

The total flow on the network is s+ t(s), thus the total cost is C(s+ t(s),m(s)).
Note that a Stackelberg strategy s may induce multiple Nash equilibria in general.
However, we define (t(s),m(s)) to be the best such equilibrium (the one with mini-
mal total cost, which will be shown to be unique in Section 4).

We will use the following notation:

2 We note that a feasible flow assignment s of compliant flow may fail to induce a Nash equilibrium
(t,m) and therefore is not considered to be a valid Stackelberg strategy.
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• (N,r,α) is an instance of the Stackelberg routing game played on a parallel net-
work with N links under flow demand r with compliance rate α . Note that the
routing game (N,r) is a special case of the Stackelberg routing game with α = 0.

• S(N,r,α) ⊂ RN
+ is the set of Stackelberg strategies for the Stackelberg instance

(N,r,α).
• S?(N,r,α) is the set of optimal Stackelberg strategies defined as

S?(N,r,α) = argmin
s∈S(N,r,α)

C(s+ t(s),m(s)). (6)

2.3 Optimal Stackelberg strategy

We now define a candidate Stackelberg strategy, which we call the non-compliant
first strategy (NCF), and which we will prove to be optimal. The NCF strategy
corresponds to first computing the best Nash equilibrium (t̄, m̄) of the non-compliant
flow for the routing game instance

(
N,(1−α)r

)
, then finding a particular strategy

s that induces (t̄, m̄).

xn

`n

a1

t̄1

...

ak̄−1

t̄k̄−1

ak̄

t̄k̄

s̄k̄

...

al−1

s̄l−1

al

s̄l

...

aN

Fig. 4 Non-compliant first (NCF) strategy s̄ and its induced equilibrium. Circles show the
best Nash equilibrium (t̄, m̄) of the non-compliant flow (1− α)r: link k̄ is in free-flow, and
links {1, . . . , k̄−1} are congested. The Stackelberg strategy s̄ = NCF(N,r,α) is highlighted in
blue.

Definition 5 (The non-compliant first (NCF) strategy).
Consider the Stackelberg instance (N,r,α). Let (t̄, m̄) be the best Nash equilib-
rium of the non-compliant flow, {(t̄, m̄)}= BNE(N,(1−α)r), and k̄ = maxsupp(t̄)
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be the last link in its support. Then the non-compliant first strategy, denoted by
NCF(N,r,α), is defined as follows

NCF(N,r,α)=

(
0, . . . ,

k̄−1

0,

k̄

xmax
k̄ − t̄k̄,x

max
k̄+1, . . . ,x

max
l−1 ,αr−

( l−1

∑
n=k̄

xmax
n − t̄k̄

)
,0, . . . ,0

)

(7)

where l is the maximal index in {k̄+1, . . . ,N} such that αr−
(

∑
l−1
n=k̄ xmax

n − t̄k̄
)
≥ 0.

In words, the NCF strategy saturates links one by one, by increasing index start-
ing from link k̄, the last link used by the non-compliant flow in the best Nash equilib-
rium of (N,(1−α)r). Thus it will assign xmax

k̄ − t̄k̄ to link k̄, then xmax
k̄+1 to link k̄+1,

xmax
k̄+2 to link k̄+ 2 and so on, until the compliant flow is assigned entirely (see Fig-

ure 4). The following theorem states the main result.

Theorem 1. Under the class of HQSF latency functions, NCF(N,r,α) is an optimal
Stackelberg strategy for the Stackelberg instance (N,r,α).

We give a proof of Theorem 1 in Section 4. We will also show that for the class
of HQSF latency functions, the best Nash equilibria can be computed in polyno-
mial time in the size N of the network, and as a consequence, the NCF strategy can
also be computed in polynomial time. This stands in contrast to previous results un-
der the class of non-decreasing latency functions, for which computing the optimal
Stackelberg strategy is NP-hard (Roughgarden, 2001).

3 Nash Equilibria

In this section, we study Nash equilibria of the routing game. We show that under the
class of HQSF latency functions, there may exist multiple Nash equilibria that have
different costs. Then we partition the set of equilibria into congested equilibria and
single-link-free-flow equilibria. Finally, we characterize the best Nash equilibrium
and show that it can be computed in quadratic time in the number of links.

3.1 Structure and properties of Nash equilibria

We first give some properties of Nash equilibria.

Proposition 1 (Total cost of a Nash Equilibrium). Let (x,m)∈NE(N,r) be a Nash
equilibrium for the instance (N,r). Then there exists `0 > 0 such that ∀n ∈ supp(x),
`n(xn,mn) = `0 and ∀n /∈ supp(x), `n(0,0)≥ `0. The total cost of the equilibrium is
then C(x,m) = r`0.
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Proposition 2. Let (x,m)∈NE(N,r) be a Nash equilibrium. Then k ∈ supp(x)⇒∀n < k,
link n is congested.

Proof. By contradiction, if mn = 0, then `n(xn,mn) = an < ak ≤ `k(xk,mk), which
contradicts Definition 2 of a Nash equilibrium.

Corollary 1 (Support of a Nash equilibrium). Let (x,m) ∈ NE(N,r) be a Nash
equilibrium and k = maxsupp(x) be the last link in the support of x (i.e. the one
with the largest free-flow latency). Then we have supp(x) = {1, . . . ,k}.

Proof. Since k ∈ supp(x), we have by Proposition 2 that ∀n < k, link n is congested,
thus n ∈ supp(x) (by definition, a congested link cannot be empty).

No essential uniqueness

For the HQSF latency class, the essential uniqueness property3 does not hold, i.e.
there may exist multiple Nash equilibria that have different costs; an example is
given in Figure 3.

Single-link-free-flow equilibria and congested equilibria

The example shows that in general, there may exist multiple Nash equilibria that
have different costs, different congestion state vectors and different supports. How-
ever, not every congestion state vector m∈{0,1}N can be that of a Nash equilibrium:
let (x,m)∈NE(N,r) be a Nash equilibrium, and let k = maxsupp(x) be the index of
the last link in the support of x. Then by Proposition 2, we have that ∀i < k, mi = 1,
and ∀i > k, mi = 0. Thus we have

• Either m =
(
1, . . . ,1,

k

0,0, . . . ,0) i.e. the last link in the support is in free-flow, all
other links in the support are congested. In this case we call (x,m) a single-link-
free-flow equilibrium, and denote the set of such equilibria by NEf(N,r)

• Or m =
(
1, . . . ,1,

k

1,0, . . . ,0) i.e. all links in the support are congested. In this
case we call (x,m) a congested equilibrium, and denote the set of such equilibria
by NEc(N,r).

3 The essential uniqueness property states that for the class of non-decreasing latency functions,
all Nash equilibria have the same total cost. See for example (Roughgarden and Tardos, 2002;
Dafermos and Sparrow, 1969; Beckmann et al., 1956).
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3.2 Existence of single-link-free-flow equilibria

Let (x,m) be a single-link-free-flow equilibrium, and let k = maxsupp(x). We have
from Proposition 2 that links {1, . . . ,k−1} are congested and link k is in free-
flow. Therefore we must have ∀n ∈ {1, . . . ,k−1}, `n(xn,1) = `k(xk,0) = ak. This
uniquely determines the flow on the congested links:

Definition 6 (Congestion flow). Let k ∈ {2, . . . ,N}. Then ∀n ∈ {1, . . . ,k−1}, there
exists a unique flow xn such that `n(xn,mn) = ak. We denote this flow by x̂n(k) and
call it k-congestion flow on link n. It is given by

x̂n(k) = `n(·,1)−1(ak). (8)

We note that x̂n(k) is decreasing in k, since `n(·,1)−1 is decreasing.

Proposition 3 (Single-link-free-flow equilibria). (x,m) is a single-link-free-flow
equilibrium if and only if ∃k ∈ {1, . . . ,N} such that 0 < r−∑

k−1
n=1 x̂n(k)≤ xmax

k , and

x ∆
=
(

x̂1(k), . . . , x̂k−1(k),r−
k−1

∑
n=1

x̂n(k),0, . . . ,0
)

(9)

m ∆
=
(
1, . . . ,1,

k

0, . . . ,0
)

(10)

Illustrations of equations (10) and (9) are shown in Figure 5.

xn

`n

a1

x̂1(3)

a2

x̂2(3)

a3

r −
2∑

n=1

x̂n(3)

a4

Fig. 5 Example of a single-link-free-flow equilibrium. Link 3 is in free-flow and links 1 and 2 are
congested. The common latency on all links in the support is a3.

Next, we give a necessary and sufficient condition for the existence of single-
link-free-flow equilibria.
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Lemma 1. Existence of single-link-free-flow equilibria
Let

rNE(N)
∆
= max

k∈{1,...,N}

{
xmax

k +
k−1

∑
n=1

x̂n(k)

}
(11)

A single-link-free-flow equilibrium exists for the instance (N,r) if and only if r ≤
rNE(N).

Proof. If a single-link-free-flow equilibrium exists, then by Proposition 3, it is of
the form given by equations (10) and (9) for some k. The flow on link k is then
given by r−∑

k−1
n=1 x̂n(k)≤ xmax

k . Therefore r ≤ xmax
k +∑

k−1
n=1 x̂n(k)≤ rNE(N).

We prove the converse by induction on the size N of the network. Let PN denote
the property: ∀r ∈ (0,rNE(N)], there exists a single-link-free-flow equilibrium for
the instance (N,r).

For N = 1, it is clear that if 0 < r ≤ xmax
1 , there is a single-link-free-flow equilib-

rium simply given by (x1,m1) = (r,0).
Now let N ≥ 1, assume PN holds and let us show PN+1. Let 0 < r ≤ rNE(N +1)

and consider an instance (N +1,r).

Case 1 If r ≤ rNE(N), then by the induction hypothesis PN , there exists a single-
link-free-flow equilibrium (x,m) for the instance (N,r). Then (x′,m′) defined as
x′ = (x1, . . . ,xN ,0) and m′ = (m1, . . . ,mN ,0) is clearly a single-link-free-flow equi-
librium for the instance (N +1,r).

Case 2 If rNE(N)< r ≤ rNE(N +1) then by Proposition 3, an equilibrium exists if

0 < r−
N

∑
n=1

x̂n(N +1)≤ xmax
N+1. (12)

First, we note that since rNE(N)< rNE(N +1), then

rNE(N +1) = xmax
N+1 +

N

∑
n=1

x̂n(N +1),

thus

r ≤ rNE(N +1) = xmax
N+1 +

N

∑
n=1

x̂n(N +1),

which proves the second inequality in (12). To show the first inequality, we have

r > rNE(N)≥ xmax
N +

N−1

∑
n=1

x̂n(N)

≥ x̂N(N +1)+
N−1

∑
n=1

x̂n(N +1),

where the last inequality results from the fact that x̂n(N)≥ x̂n(N +1) and xmax
N ≥

x̂N(N +1) by Definition 6 of congestion flow. This completes the induction.
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Corollary 2. The maximum demand r such that the set of Nash equilibria NE(N,r)
is non-empty is rNE(N).

Proof. By the previous Lemma, rNE(N) is a lower bound on the maximum de-
mand. To show that it is also an upper bound, suppose that NE(N,r) is non-
empty, and let (x,m) ∈ NE(N,r) and k = maxsupp(x). Then we have supp(x) =
{1, . . . ,k} by Corollary 1, and by Definition 2 of a Nash equilibrium, ∀n≤ k,
`n(xn,mn) = `k(xk,mk)≥ ak, and therefore xn ≤ x̂n(k). We also have xk ≤ xmax

k .
Combining the inequalities, we have

r =
k

∑
n=1

xn ≤ xmax
k +

k−1

∑
n=1

x̂n(k)≤ rNE(N).

3.3 Number of equilibria

Proposition 4 (An upper bound on the number of equilibria). Consider a routing
game instance (N,r). For any given k ∈ {1, . . . ,N}, there is at most one single-link-
free-flow equilibrium and one congested equilibrium with support {1, . . . ,k}. As a
consequence, by Corollary 1, the instance (N,r) has at most N single-link-free-flow
equilibria and N congested equilibria.

Proof. We prove the result for single-link-free-flow equilibria, the proof for con-
gested equilibria is similar. Let k ∈ {1, . . . ,N}, and assume (x,m) and (x′,m′) are
single-link-free-flow equilibria such that maxsupp(x) = maxsupp(x′) = k. We first
observe that by Corollary 1, x and x′ have the same support {1, . . . ,k}, and by
Proposition 2, m = m′. Since link k is in free-flow under both equilibria, we have
`k(xk,mk) = `k(x′k,m

′
k) = ak, and by Definition 2 of a Nash equilibrium, any link

in the support of both equilibria has the same latency ak, i.e. ∀n < k, `n(xn,1) =
`n(x′n,1) = ak. Since the latency in congestion is injective, we have ∀n < k, xn = x′n,
therefore x = x′.

3.4 Best Nash equilibrium

In order to study the inefficiency of Nash equilibria, and the improvement of perfor-
mance that we can achieve using optimal Stackelberg routing, we focus our attention
on best Nash equilibria and price of stability (Anshelevich et al., 2004) as a measure
of their inefficiency.

Lemma 2 (Best Nash Equilibrium). For a routing game instance (N,r), r ≤
rNE(N), the unique best Nash equilibrium is the single-link-free-flow equilibrium
that has the smallest support
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BNE(N,r) = argmin
(x,m)∈NEf(N,r)

{maxsupp(x)}.

Proof. We first show that a congested equilibrium cannot be a best Nash equilib-
rium. Let (x,m) ∈ NE(N,r) be a congested equilibrium and let k = maxsupp(x).
By Proposition 1, the cost of (x,m) is C(x,m) = `k(xk,1)r > akr. We observe that
(x,m) restricted to {1, . . . ,k} is an equilibrium for the instance (k,r), thus by Corol-
lary 2, r ≤ rNE(k), and by Lemma 1, there exists a single-link-free-flow equi-
librium (x′,m′) for (k,r), with cost C(x′,m′) ≤ akr. Clearly, (x′′,m′′) defined as
x′′ = (x′1, . . . ,x

′
k,0, . . . ,0) and m′′ = (m′1, . . . ,m

′
k,0, . . . ,0), is a single-link-free-flow

equilibrium for the original instance (N,r), with cost C(x′′,m′′) =C(x′,m′)≤ akr <
C(x,m), which proves that (x,m) is not a best Nash equilibrium. Therefore best
Nash equilibria are single-link-free-flow equilibria. And since the cost of a single-
link-free-flow equilibrium (x,m) is simply C(x,m) = akr where k = maxsupp(x),
it is clear that the smaller the support, the lower the total cost. Uniqueness follows
from Proposition 4.

Complexity of computing the Best Nash equilibrium

Lemma 2 gives a simple algorithm for computing the best Nash equilibrium for
any instance (N,r): simply enumerate all single-link-free-flow equilibria (there are
at most N such equilibria by Proposition 4), and select the one with the smallest
support. This is detailed in Algorithm 1.

Algorithm 1 Best Nash Equilibrium

procedure bestNE(N,r)
Inputs: Size of the network N, demand r
Outputs: Best Nash equilibrium (x,m)
for k ∈ {1, . . . ,N}

let (x,m) = freeFlowConfig(k)
if xk ∈ [0,xmax

k ]
return (x,m)

return No-Solution

procedure freeFlowConfig(k)
Inputs: Free-flow link index k
Outputs: Assignment (x,m) = (xr,k,mk)
for n ∈ {1, . . . ,N}

if n < k
xn = x̂n(k), mn = 1

elseif n == k
xk = r−∑

k−1
n=1 xn, mk = 0

else
xn = 0, mn = 0

return (x,m)
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The congestion flow values {x̂n(k),1≤ n < k ≤ N} can be precomputed in O(N2).
There are at most N calls to freeFlowConfig, which runs in O(N) time, thus
bestNE runs in O(N2) time. This shows that the best Nash equilibrium can be
computed in quadratic time.

4 Optimal Stackelberg strategies

In this section, we prove our main result that the NCF strategy is an optimal Stack-
elberg strategy (Theorem 1). Furthermore, we show that the entire set of optimal
strategies S?(N,r,α) can be computed in a simple way from the NCF strategy.

Let (t̄, m̄) be the best Nash equilibrium for the instance (N,(1−α)r). It repre-
sents the best Nash equilibrium of the non-compliant flow (1−α)r when it is not
sharing the network with the compliant flow. Let k̄ = maxsupp(t̄) be the last link in
the support of t̄. Let s̄ be the NCF strategy defined by equation (7). Then the total
flow x̄ = s̄+ t̄ is given by

x̄ =
(

x̂1(k̄), . . . , x̂k̄−1(k̄),x
max
k̄ ,xmax

k̄+1, . . . ,x
max
l−1 ,r−

k̄−1

∑
n=1

x̂n(k̄)−
l−1

∑
n=k̄

xmax
n ,0, . . . ,0

)
,

(13)

and the corresponding latencies are

(
ak̄, . . . ,

k̄

ak̄,ak̄+1, . . . ,aN

)
. (14)

Figure 4 shows the total flow x̄n = s̄n+ t̄n on each link. Under (x̄, m̄), links
{

1, . . . , k̄−1
}

are congested and have latency ak̄, links
{

k̄, . . . , l−1
}

are in free-flow and at maxi-
mum capacity, and the remaining flow is assigned to link l.

We observe that for any Stackelberg strategy s ∈ S(N,r,α), the induced best
Nash equilibrium (t(s),m(s)) is a single-link-free-flow equilibrium by Lemma 2,
since (t(s),m(s)) is the best Nash equilibrium for the instance (N,αr) and latencies

˜̀n : D̃n → R+

(xn,mn) 7→ `n(sn + xn,mn)
(15)

where D̃n
∆
= [0, x̃max

n ]×{0}∪ (0, x̃max
n )×{1} and x̃max

n
∆
= xmax

n − sn.
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4.1 Proof of Theorem 1: the NCF strategy is an optimal
Stackelberg strategy

Let s ∈ S(N,r,α) be any Stackelberg strategy and (t,m) = (t(s),m(s)) be the best
Nash equilibrium of the non-compliant flow, induced by s. To prove that the NCF
startegy s̄ is optimal, we will compare the costs induced by s and s̄. Let x = s+ t(s)
and x̄ = s̄+ t̄ be the total flows induced by each strategy. To prove Theorem 1, we
seek to show that C(x,m)≥C(x̄, m̄).

The proof is organized as follows: we first compare the supports of the induced
equilibria (Lemma 3), then show that links {1, . . . , l− 1} are more congested un-
der (x,m) than under (x̄, m̄), in the following sense: they hold less flow and have
greater latency (Lemma 4). Then we conclude by showing the desired inequality.

Lemma 3. Let k = maxsupp(t) and k̄ = maxsupp(t̄). Then k ≥ k̄.

In other words, the last link in the support of t(s) has higher free-flow latency than
the last link in the support of t̄.

Proof. We first note that (s + t(s),m) restricted to supp(t(s)) is a Nash equi-
librium. Then since link k is in free-flow we have `k(sk + tk(s),mk) = ak, and
since k ∈ supp(t(s)), we have by definition that any other link has greater or
equal latency. In particular, ∀n ∈ {1, . . .k−1}, `n(sn + tn(s),mn) ≥ ak, thus sn +
tn(s)≤ x̂n(k). Therefore we have ∑

k
n=1 sn+tn(s)≤∑

k−1
n=1 x̂n(k)+xmax

k . But ∑
k
n=1(sn+

tn(s))≥∑n∈supp(t) tn(s) = (1−α)r since supp(t)⊆{1, . . . ,k}. Therefore (1−α)r≤
∑

k−1
n=1 x̂n(k)+xmax

k . By Lemma 1, there exists a single-link-free-flow equilibrium for
the instance (N,(1−α)r) supported on the first k links. Let (t̃, m̃) be such an equi-
librium. The cost of this equilibrium is (1−α)r`0 where `0 ≤ ak is the free-flow
latency of the last link in the support of t̃. Thus C(t̃, m̃)≤ (1−α)rak. Since by defi-
nition (t̄, m̄) is the best Nash equilibrium for the instance (N,(1−α)r) and has cost
(1−α)rak̄, we must have (1−α)rak̄ ≤ (1−α)rak, i.e. ak̄ ≤ ak.

Lemma 4. Under (x,m), the links {1, . . . , l−1} have greater (or equal) latency and
hold less (or equal) flow than under (x̄, m̄), i.e. ∀n ∈ {1, . . . , l− 1}, `n(xn,mn) ≥
`n(x̄n, m̄n) and xn ≤ x̄n.

Proof. Since k ∈ supp(t), we have by definition of a Stackelberg strategy and its in-
duced equilibrium that ∀n ∈ {1, . . . ,k− 1}, `n(xn,mn)≥ `k(xk,mk)≥ ak, see equa-
tion (5). We also have by definition of (x̄, m̄) and the resulting latencies given by
equation (14), ∀n ∈ {1, . . . , k̄−1}, n is congested and `n(xn,mn) = ak̄. Thus using
the fact that k ≥ k̄, we have ∀n ∈ {1, . . . , k̄−1}, `n(xn,mn)≥ ak ≥ ak̄ = `n(x̄n, m̄n),
and xn ≤ x̂n(k)≤ x̂n(k̄) = x̄n.

We have from equation (13) that ∀n ∈ {k̄, . . . , l−1}, n is in free-flow and at maxi-
mum capacity under (x̄, m̄) (i.e. x̄n = xmax

n and `n(x̄n) = an). Thus ∀n∈ {k̄, . . . , l−1},
`n(xn,mn) ≥ an = `n(x̄n, m̄n) and xn ≤ xmax

n = x̄n. This completes the proof of the
Lemma.
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We can now show the desired inequality. We have

C(x,m) =
N

∑
n=1

xn`n(xn,mn)

=
l−1

∑
n=1

xn`n(xn,mn)+
N

∑
n=l

xn`n(xn,mn)

≥
l−1

∑
n=1

xn`n(x̄n, m̄n)+
N

∑
n=l

xnal (16)

where the last inequality is obtained using Lemma 4 and the fact that ∀n ∈ {l, . . . ,N},
`n(xn,mn)≥ an ≥ al . Then rearranging the terms we have

C(x,m)≥
l−1

∑
n=1

(xn− x̄n)`n(x̄n, m̄n)+
l−1

∑
n=1

x̄n`n(x̄n, m̄n)+
N

∑
n=l

xnal .

Then we have ∀n ∈ {1, . . . , l−1},

(xn− x̄n)(`n(x̄n, m̄n)−al)≥ 0,

(by Lemma 4, xn− x̄n ≤ 0, and we have `n(x̄n, m̄n)≤ al by equation (14)). Thus

l−1

∑
n=1

(xn− x̄n)`n(x̄n, m̄n)≥
l−1

∑
n=1

(xn− x̄n)al , (17)

and we have

C(x,m)≥
l−1

∑
n=1

(xn− x̄n)al +
l−1

∑
n=1

x̄n`n(x̄n, m̄n)+
N

∑
n=l

xnal

= al

(
N

∑
n=1

xn−
l−1

∑
n=1

x̄n

)
+

l−1

∑
n=1

x̄n`n(x̄n, m̄n)

= al

(
r−

l−1

∑
n=1

x̄n

)
+

l−1

∑
n=1

x̄n`n(x̄n, m̄n).

But al
(
r−∑

l−1
n=1 x̄n

)
= x̄l`l(x̄l , m̄l) since supp(x̄) = {1, . . . , l} and `l(x̄l , m̄l) = al .

Therefore

C(x,m)≥ x̄l`l(x̄l , m̄l)+
l−1

∑
n=1

x̄n`n(x̄n, m̄n) =C(x̄, m̄).

This completes the proof of Theorem 1. ut
Therefore the NCF strategy is an optimal Stackelberg strategy, and it can be

computed in polynomial time since it is generated in linear time after computing
the best Nash equilibrium BNE(N,(1−α)r), which can be computed in O(N2).
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The NCF strategy is, in general, not the unique optimal Stackelberg strategy. In
the next section, we show that any optimal Stackelberg strategy can in fact be easily
expressed in terms of the NCF strategy.

4.2 The set of optimal Stackelberg strategies

In this section, we show that the set of optimal Stackelberg strategies S?(N,r,α) can
be generated from the NCF strategy. This shows in particular that the NCF strategy
is robust, in a sense explained below.

Let s̄=NCF(N,r,α) be the non-compliant first strategy, {(t̄, m̄)}=BNE(N,(1−
α)r) be the Nash equilibrium induced by s̄, and k̄ = maxsupp(t̄) the last link in
the support of the induced equilibrium, as defined above. By definition, the NCF
strategy s̄ assigns zero compliant flow to links

{
1, . . . , k̄−1

}
, and saturates links

one by one, starting from k̄ (see equation (7) and Figure 4).
To give an example of an optimal Stackelberg strategy other than the NCF strat-

egy, consider a strategy s defined by s = s̄+ ε , where

ε = (ε1,0, . . . ,0,

k̄

− ε1,0, . . . ,0)

and is such that s1 = ε1 ∈ [0, x̂1(k̄)], and sk̄ = s̄k̄− ε1 ≥ 0 (See Figure 6). Strategy s
will induce t(s) = t̄− ε , and the resulting total cost is minimal since C(s+ t(s)) =
C(s̄+ ε + t̄ − ε) = C(s̄+ t̄). This shows that s is an optimal Stackelberg strategy.
More generally, the following holds:

Lemma 5. Consider a Stackelberg strategy s of the form s = s̄+ ε , where

ε =
(

ε1,ε2, . . . ,εk̄−1,−
k̄−1

∑
n=1

εn,

k̄+1

0, . . . ,0
)

(18)

and ε is such that

εn ∈ [0, x̂n(k̄)] ∀n ∈
{

1, . . . , k̄−1
}

(19)

s̄k̄ ≥
k̄−1

∑
n=1

εn. (20)

Then s is an optimal Stackelberg strategy.

Proof. We show that s = s̄+ ε is a feasible assignment of the compliant flow αr,
and that the induced equilibrium of the followers is (t(s),m(s)) = (t̄− ε, m̄).

Since ∑
N
n=1 εn = 0 by definition (18) of ε , we have ∑

N
n=1 sn = ∑

N
n=1 s̄n = αr. We

also have

• ∀n ∈ {1, . . . , k̄−1}, sn = εn ∈ [0, x̂n(k̄)] by equation (19). Thus sn ∈ [0,xmax
n ].
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xn

`n

a1

t1

s1 = ε1

...

ak̄−1

ak̄

tk̄

sk̄ = s̄k̄ − ε1ε1

...

al−1

sl−1

al

sl

...

aN

Fig. 6 Example of an optimal Stackelberg strategy s = s̄− ε . The circles show the best Nash
equilibrium (t̄, m̄). The strategy s is highlighted in green.

• sk̄ = s̄k̄ + εk̄ ≥ 0 by equation (20), and sk̄ ≤ s̄k̄ ≤ xmax
k̄ .

• ∀n ∈ {k̄+1, . . . ,N}, sn = s̄n ∈ [0,xmax
n ].

This shows that s is a feasible assignment. To show that s induces (t̄ − ε, m̄), we
need to show that ∀n ∈ supp(t̄− ε), ∀k ∈ {1, . . . ,N},

`n(s̄n + εn + t̄n− εn, m̄n)≤ `k(s̄k + εk + t̄k− εk, m̄k)

This is true ∀n ∈ supp(t̄), by definition of (t̄, m̄) and equation (5). To conclude, we
observe that supp(t̄− ε)⊂ supp(t̄).

This shows that the NCF strategy is robust to perturbations: even if the strat-
egy s̄ is not realized exactly, it may still be optimal if the perturbation ε satisfies the
conditions given above.

The converse of the previous lemma is true. This gives a necessary and sufficient
condition for optimal Stackelberg strategies, given in the following theorem.

Theorem 2 (Characterization of optimal Stackelberg strategies). The set of op-
timal Stackelberg strategies S?(N,r,α) is the set of strategies s of the form s = s̄+ε

where s̄ = NCF(N,r,α) is the non-compliant first strategy, and ε satisfies equations
(18), (19) and (20).

Proof. We prove the converse of Lemma 5. Let s ∈ S?(N,r,α) be an optimal Stack-
elberg strategy, (t,m) = (t(s),m(s)) the equilibrium of non-compliant flow induced
by s, k = maxsupp(t) the last link in the support of t, and x = s+ t the total flow
assignment.
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We first show that x= x̄. By optimality of both s and s̄, we have C(x,m)=C(x̄, m̄),
and therefore inequalities (16) and (17) in the proof of Theorem 1 must hold with
equality. In particular, to have equality in (16) we need to have

l−1

∑
n=1

xn(`n(xn,mn)− `n(x̄n, m̄n))+
N

∑
n=l

xn(`n(xn,mn)−al) = 0. (21)

The terms in both sums are non-negative, therefore

xn(`n(xn,mn)− `n(x̄n, m̄n)) = 0 ∀n ∈ {1, . . . , l−1} (22)
xn(`n(xn,mn)−al) = 0 ∀n ∈ {l, . . . ,N}, (23)

and to have equality in (17) we need to have

(xn− x̄n)(`n(x̄n, m̄n)−al) = 0 ∀n ∈ {1, . . . , l−1}. (24)

Let n ∈ {1, . . . , l−1}. From the expression (14) of the latencies under x̄, we have
`n(x̄n, m̄n)< al , thus from equality (24) we have xn− x̄n = 0. Now let n ∈ {l +1, . . .N}.
We have by definition of the latency functions, `n(xn,mn)≥ an > al , thus from
equality (23), xn = 0. We also have from the expression (13), x̄n = 0. Therefore
xn = x̄n ∀n 6= l, but since x and x̄ are both assignments of the same total flow r, we
also have xl = x̄l , which proves x = x̄.

Next we show that k = k̄. We have from the proof of Theorem 1 that k ≥
k̄. Assume by contradiction that k > k̄. Then since k ∈ supp(t), we have by
definition of the induced followers’ assignment in equation (5), ∀n ∈ {1, . . . ,N},
`n(xn,mn)≥ `k(xk,mk). And since `k(xk,mk)≥ ak > ak̄, we have (in particular for
n = k̄) `k̄(xk̄,mk̄)> ak̄, i.e. link k̄ is congested under (x̄, m̄), thus xk̄ > 0. Finally,
since `k̄(x̄k̄, m̄k̄) = ak̄, we have `k̄(x̄k̄, m̄k̄)> `k̄(x̄k̄, m̄k̄). Therefore xk̄(`k̄(xk̄,mk̄)−
`k̄(x̄k̄, m̄k̄))> 0, since k̄ < k ≤ l, this contradicts (22).

Now let ε = s− s̄. We want to show that ε satisfies equations (18), (19) and (20).
First, we have ∀n ∈

{
1, . . . , k̄−1

}
, s̄n = 0, thus εn = sn− s̄n = sn. We also have

∀n ∈
{

1, . . . , k̄−1
}

, 0 ≤ sn ≤ xn, xn = x̄n (since x = x̄), and x̄n = x̂n(k̄) (by equa-
tion (13)), therefore 0≤ sn ≤ x̂n(k̄). This proves (19).

Second, we have ∀n ∈
{

k̄+1, . . . ,N
}

, tn = t̄n = 0 (since k = k̄), and xn = x̄n

(since x = x̄) thus εn = sn− s̄n = xn− tn− x̄n + t̄n = 0. We also have ∑
N
n=1 εn = 0

since s and s̄ are assignments of the same compliant flow αr, thus εk̄ =−∑n 6=k̄ εn =

−∑
k̄−1
n=1 εn. This proves (18).

Finally, we readily have (20) since sk̄ ≥ 0 by definition of s.

5 Price of stability under optimal Stackelberg routing

To quantify the inefficiency of Nash equilibria, and the improvement that can be
achieved using Stackelberg routing, several metrics have been used including price
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of anarchy (Roughgarden and Tardos, 2004, 2002) and price of stability (Anshele-
vich et al., 2004). We use price of stability as a metric, which is defined as the ratio
between the cost of the best Nash equilibrium and the cost of the social optimum4.
We start by characterizing the social optimum.

5.1 Characterization of social optima

Consider an instance (N,r) where the flow demand r does not exceed the maxi-
mum capacity of the network, i.e. r ≤ ∑n xmax

n . A social optimal assignment is an
assignment that minimizes the total cost function C(x,m) = ∑n xn`n(xn,mn), i.e. it
is a solution to the following Social Optimum (SO) optimization problem

minimize
x∈∏

N
n=1[0,x

max
n ]

m∈{0,1}N

N

∑
n=1

xn`n(xn,mn) (SO)

subject to
N

∑
n=1

xn = r

Proposition 5. (x?,m?) is optimal for (SO) only if ∀n ∈ {1, . . . ,N}, m?
n = 0.

Proof. This follows immediately from the fact the latency on a link in congestion
is always greater than the latency of the link in free-flow `n(xn,1)> `n(xn,0) ∀xn ∈
(0,xmax

n ).

As a consequence of the previous proposition, and using the fact that the latency is
constant in free-flow, `n(xn,0) = an, the social optimum can be computed by solving
the following equivalent linear program

minimize
x∈∏

N
n=1[0,x

max
n ]

N

∑
n=1

xnan

subject to
N

∑
n=1

xn = r

Then since the links are ordered by increasing free-flow latency a1 < · · · < aN , the
social optimum is simply given by the assignment that saturates most efficient links
first. Formally, if k0 = max

{
k|r ≥ ∑

k
n=1 xmax

n
}

, then the social optimal assignment

is given by x? =
(

xmax
1 , . . . ,xmax

k0
,r−∑

k0
n=1 xmax

n ,0, . . . ,0
)

.

4 Price of anarchy is defined as the ratio between the costs of the worst Nash equilibrium and the
social optimum. For the case of non-decreasing latency functions, the price of anarchy and the
price of stability coincide since all Nash equilibria have the same cost by the essential uniqueness
property.
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5.2 Price of stability and value of altruism

We are now ready to derive the price of stability. Let (x?,0) denote the social opti-
mum of the instance (N,r). Let s̄ be the non-compliant first strategy NCF(N,r,α),
and (t(s̄),m(s̄)) the induced equilibrium of the followers. The price of stability of
the Stackelberg instance NCF(N,r,α) is

POS(N,r,α) =
C (s̄+ t(s̄),m(s̄))

C(x?,0)
,

where s̄ is the NCF strategy, and (t̄, m̄) its induced equilibrium. The improvement
achieved by optimal Stackelberg routing with respect to the Nash equilibrium (α =
0) can be measured using the value of altruism (Aswani and Tomlin, 2011), defined
as

VOA(N,r,α) =
POS(N,r,0)
POS(N,r,α)

.

This terminology refers to the improvement achieved by having a fraction α of
altruistic (or compliant) players, compared to a situation where everyone is selfish.
We give the expressions of price of stability and value of altruism in the case of a
two-link network, as a function of the compliance rate α ∈ [0,1] and demand r.

Case 1: 0≤ (1−α)r ≤ xmax
1 .

In this case, link 1 can accommodate all the non-compliant flow, thus the induced
equilibrium of the followers is

(t(s̄),m(s̄)) =
(
((1−α)r,0),(0,0)

)
,

and by equation (7) the total flow induced by s̄ is s̄+ t(s̄) = (xmax
1 ,r− xmax

1 ) and
coincides with the social optimum. Therefore, the price of stability is one.

Case 2: xmax
1 < (1−α)r ≤ xmax

2 + x̂1(2).

Observe that this case can only occur if xmax
2 + x̂1(2) > xmax

1 . In this case, link 1
cannot accommodate all the non-compliant flow, and the induced Nash equilib-
rium (t(s̄),m(s̄)) is then supported on both links. It is equal to (x2,(1−α)r,m2) =(
(x̂1(2),(1−α)r− x̂1(2)),(1,0)

)
, and the total flow is s̄+ t(s̄) = (x̂1(2),r− x̂1(2)),

with total cost a2r (Figure 7b). The social optimum is (x?,m?) =
(
(xmax

1 ,r −
xmax

1 ),(0,0)
)
, with total cost a1xmax

1 +a2(r− xmax
1 ) (Figure 7a). Therefore the price

of stability is
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xn

`n

a1

xmax
1

a2

r − xmax
1

(a) Social optimum

xn

`n

a1

x̂1(2)

a2

r − x̂1(2)

(b) Best Nash equilibrium

Fig. 7 Social optimum and best Nash equilibrium when the demand exceeds the capacity of the
first link (r > xmax

1 ). The area of the shaded regions represents the total costs of each assignment.

POS(2,r,α) =
ra2

ra2− xmax
1 (a2−a1)

=
1

1− xmax
1
r

(
1− a1

a2

) .

We observe that for a fixed flow demand r > xmax
1 , the price of stability is an

increasing function of a2/a1. Intuitively, the inefficiency of Nash equilibria in-
creases when the difference in free-flow latency between the links increases. And as
a2→ a1, the price of stability goes to 1.

r

POS

1

xmax
1

a2/a1

xmax
2 + x̂1(2)

(a) Price of stability, α = 0,

r

POS

1

xmax
1 /(1− α)

a2/a1

xmax
2 + x̂1(2)

(b) Price of stability, α = 0.2

r

VOA

1

xmax
1 /(1− α)

a2/a1

xmax
2 + x̂1(2)

(c) Value of altruism, α = 0.2

Fig. 8 Price of stability and value of altruism on a two-link network. Here we assume that x̂1(2)+
xmax

2 > xmax
1 .

When the compliance rate is α = 0, the price of stability attains a supremum
equal to a2/a1, at r = (xmax

1 )+ (Figure 8a). This shows that selfish routing is most
costly when the demand is slightly above critical value rNE(1) = xmax

1 . This also
shows that for the general class of HQSF latencies on parallel networks, the price of
stability is unbounded, since one can design an instance (2,r) such that the maximal
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price of stability a2/a1 is arbitrarily large. Under optimal Stackelberg routing (α >
0), the price of stability attains a supremum equal to 1/(α + (1−α)(a1/a2)) at
r =

(
xmax

1 /(1−α)
)+. We observe in particular that the supremum is decreasing

in α , and that when α = 1 (total control), the price of stability is identically one.
Therefore optimal Stackelberg routing can significantly decrease price of stabil-

ity when r ∈ (xmax
1 ,xmax

1 /(1−α)). This can occur for small values of the compliance
rate in situations where the demand slightly exceeds the capacity of the first link
(Figure 8c).

The same analysis can be done for a general network: given the latency func-
tions on the links, one can compute the price of stability as a function of the flow
demand r and the compliance rate α , using the form of the NCF strategy together
with Algorithm 1 to compute the BNE. Computing the price of stability function
reveals critical values of demand, for which optimal Stackelberg routing can lead
to a significant improvement. This is discussed in further detail in the next section,
using an example network with 4 links.

6 Numerical Results

Fig. 9 Map of a simplified parallel highway network model, connecting San Francisco to San Jose.

In this section, we apply the previous results to a scenario of freeway traffic
from the San Francisco Bay Area. Four parallel highways are chosen starting in
San Francisco and ending in San Jose: I-101, I-280, I-880 and I-580 (Figure 9).
We analyze the inefficiency of Nash equilibria, and show how optimal Stackelberg
routing (using the NCF strategy) can improve the efficiency.

Figure 10 shows the latency functions for the highway network, assuming a tri-
angular fundamental diagram for each highway. Under free-flow conditions, I-101
is the fastest route available between San Francisco and San Jose. When I-101 be-
comes congested, other routes represent viable alternatives.
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Fig. 10 Latency functions on an example highway network. Latency is in minutes, and demand is
in cars/minute.

We computed price of stability and value of altruism (defined in the previous
section) as a function of the demand r for different compliance rates. The results
are shown in Figure 11. We observe that for a fixed compliance rate, the price of
stability is piecewise continuous in the demand (Figure 11a), with discontinuities
corresponding to an increase in the cardinality of the equilibrium’s support (and a
link transitioning from free-flow to congestion). If a transition exists for link n, it
occurs at critical demand r = r(α)(n), defined to be the infimum demand r such that
n is congested under the equilibrium induced by NCF(N,r,α).
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Fig. 11 Price of stability and value of altruism as a function of the demand r for different values
of compliance rate α .

It can be shown that r(α)(n) = rNE(n)/(1− α), and we have in particular
rNE(n) = r(0)(n). Therefore if a link n is congested under best Nash equilibrium
(r > rNE(n)), optimal Stackelberg routing can decongest n if r(α)(n)≥ r. In particu-
lar, when the demand is slightly above critical demand r(0)(n), link n can be decon-
gested with a small compliance rate. This is illustrated by the numerical values of
price of stability on Figure 11a, where a small compliance rate (α = 0.05) achieves
high value of altruism when the demand is slightly above the critical values. This
shows that optimal Stackelberg routing can achieve a significant improvement in
efficiency, especially when the demand is near one of the critical values r(α)(n).
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(a) Price of stability (b) Value of altruism

Fig. 12 Price of stability (12a) and value of altruism (12b) as a function of the compliance rate α

and demand r. Iso-α lines are plotted for α = 0.03 (dashed), α = 0.15 (dot-dashed), and α = 0.5
(solid).

Figure 12 shows price of stability and value of altruism as a function of the
demand r ∈ [0,rNE(N)] and compliance rate α ∈ [0,1]. We observe in particular
that for a fixed value of demand, price of stability is a piecewise constant func-
tion of α . Computing this function can be useful for efficient planning and con-
trol, since it informs the central coordinator of the critical compliance rates that can
achieve a strict improvement. For instance, if the demand on the example network is
1100 cars/minute, price of stability is constant for compliance rates α ∈ [0.14,0.46].
Therefore if a compliance rate greater than 0.46 is not feasible, the controller may
prefer to implement a control strategy with α = 0.14, since further increasing the
compliance rate will not improve efficiency, and may incur additional external cost
(due to incentivizing more drivers, for example).

7 Summary and concluding remarks

Motivated by the fundamental diagram of traffic for transportation networks, this
chapter has introduced a new class of latency functions (HQSF) to model conges-
tion with horizontal queues, and studied the resulting Nash equilibria for non-atomic
routing games on parallel networks. We showed that the essential uniqueness prop-
erty does not hold for HQSF latencies, and that the number of equilibria is at most
2N. We also characterized the best Nash equilibrium. In the Stackelberg routing
game, we proved that the Non-compliant First (NCF) strategy is optimal, and that
it can be computed in polynomial time. Table 1 summarizes the main differences
between the classical setting (vertical queues) and the HQSF setting.

We illustrated these results using an example network for which we computed
the decrease in inefficiency that can be achieved using optimal Stackelberg routing.
This example showed that when the demand is near critical values rNE(n), optimal
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Setting Vertical queues Horizontal queues, single-valued in free-flow
(HQSF)

Model x 7→ `(x)
latency is a function of
the flow x ∈ [0,xmax]

(x,m) 7→ `(x,m)
latency is a function of the flow x ∈ [0,xmax] and
the congestion state m ∈ {0,1}.

Assumptions x 7→ `(x) is continuously
non-decreasing.
x 7→ x`(x) is convex.

x 7→ `(x,0) is single-valued.
x 7→ `(x,1) is continuously decreasing.
limx→xmax `(x,1) = `(xmax,0).

Set of Nash
equilibria

Essential uniqueness: if
x,x′ are Nash equilibria,
then C(x) =C(x′) (Beck-
mann et al., 1956).

No essential uniqueness in general.
The number of Nash equilibria is at most 2N
(Proposition 4)
The best Nash equilibrium is a single-link-free-
flow equilibrium (Lemma 2)

Optimal Stack-
elberg strategy

NP hard (Roughgarden,
2001)

The NCF strategy is optimal and can be computed
in polynomial time. (Theorem 1)
The set of all optimal Stackelberg strategies can be
computed in polynomial time (Theorem 2)

Table 1 Main assumptions and results for the Stackelberg routing game on a parallel network.

Stackelberg routing can achieve a significant improvement in efficiency, even for
small values of compliance rate.

On the one hand, these results show that careful routing of a small compliant
population can dramatically improve the efficiency of the network. On the other
hand, they also indicate that for certain demand and compliance values, Stackelberg
routing can be completely ineffective. Therefore identifying the ranges where op-
timal Stackelberg routing does improve the efficiency of the network is crucial for
effective planning and control.

This framework offers several directions for future research: the work presented
here only considers parallel networks under static assumptions (constant flow de-
mand r, and static equilibria) and one question is whether these equilibria are stable
in the dynamic sense, and how one may steer the system from one equilibrium to a
better one: consider for example the case where the players are in a congested equi-
librium, and assume a coordinator has control over a fraction of the flow. Can the
coordinator steer the system to a single-link-free-flow equilibrium by decongesting
a link? And what is the minimal compliance rate needed to achieve this?
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