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Abstract— We consider a routing game played on a graph, in
which different populations of drivers (or packet routers) itera-
tively make routing decisions and seek to minimize their delays.
The Nash equilibria of the game are known to be the minimizers
of a convex potential function, over the product of simplexes
which represent the strategy spaces of the populations. We
consider a class of population dynamics which only uses local
loss information, and which can be interpreted as a mirror
descent on the convex potential. We show that for vanishing,
non-summable learning rates, mirror descent dynamics are
guaranteed to converge to the set of Nash equilibria, and derive
convergence rates as a function of the learning rate sequences
of each population, and illustrate these results on numerical
examples.

I. INTRODUCTION

Routing games form a class of potential games used
to model the interaction of players on a network. It has
been extensively studied in transportation settings since the
seminal work of Beckman [2], see for example [14] and the
references therein. Routing games are also used to model
congestion in communication networks [11], as well as job
scheduling [13]. The one-shot routing game has played an
important role in understanding the inefficiencies of networks
(for example, the Braess paradox [5], and the price of
anarchy [15]), and developing strategies to alleviate this
inefficiency, either through network design or pricing [11].

Nash equilibria of the one-shot routing game are known
to be the solutions to a convex problem: Rosenthal [12]
proposed a potential function and proved that the set of Nash
equilibria is exactly the set of minimizers of this potential.

Beyond characterizing the equilibria of the one-shot game,
many studies have been concerned with the dynamics of
routing, both in continuous-time [16], [8] and in discrete
time [3], [9]. Modeling the dynamics of the game can be very
informative, as it allows us to study stability and convergence
rates to the equilibria, and is essential in designing control
schemes.

In [16], Sandholm studies continuous-time population dy-
namics for potential games, which include routing games,
and shows that if a positive correlation condition is satisfied
between the dynamics vector field and the potential gradient
vector field, the population strategies converge to the set of
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Nash equilibria. Fischer and Vöcking [8] study one particular
example of dynamics, given by the replicator equation, a
popular model in evolutionary game theory [18]. They show
that replicator dynamics for the routing game are guaranteed
to converge to the set of stationary points, a superset of
Nash equilibria. In [3], Blum et al. consider a discrete-time
setting, and study online learning dynamics. They show that
if the regret of each population is sublinear, then the time-
averaged strategies are guaranteed to converge to the set
of Nash equilibria, and they give convergence rates. This
result is very powerful, as it applies to a large class of
algorithms. However, due to its generality, it only guarantees
convergence in the sense of Cesàro means (in other words,
convergence of the time-averages), not convergence of the
sequence itself. In [9], Krichene et. al consider a sub-class
of dynamics with sub-linear regret, which can be viewed
as a stochastic approximation of the replicator dynamics.
Under this restriction, the sequence of strategies is shown
to asymptotically converge, however no general convergence
rate is known for this class of dynamics.

In this paper, we consider a general class of dynamics
which can be viewed as a mirror descent iteration on the
Rosenthal potential function. This class is described in detail
in Section II. Algorithms in this class are known to have
sub-linear regret, as discussed in Section III, which proves
convergence in the sense of Cesàro means. We additionally
show that under a mild assumption on the learning rates, the
sequence is, in fact, guaranteed to converge, and we derive
convergence rates. These results hold even for heterogeneous
dynamics, i.e. dynamics such that each population obeys
a different update equation, with different learning rates.
These convergence results are similar to [7] (we thank the
anonymous reviewer for bringing this work to our attention),
but our results do not require the populations to know the
Lipschitz constant of the loss functions. Finally, we give
a few numerical examples to illustrate these convergence
results in Section IV, and we compare the empirical rates
to our theoretical bounds.

A. The routing game
The routing game is given by a directed graph G = (V,E)

with vertex set V and edge set E ⊂ V ×V , and a finite
number of populations {Pk}k∈{1,...,K}. A population Pk is
characterized by a source vertex sk ∈ V and a destination
vertex dk ∈ V , and represents a set of players (drivers, or
packet routers) commuting or sending network traffic from
sk to dk. The action set of every population Pk is the set of
simple paths connecting the source sk to the destination dk,
and will be denoted Pk. In other words, players choose a
route (or a distribution over routes) from the origin to the
destination. Let mk be the total mass of population Pk. A mass



distribution for population Pk is a vector xk ∈mk∆Pk , where
∆Pk = {π ∈ RPk

+ : ∑p∈Pk
πp = 1}. The mass distributions

(x1, . . . ,xK) determine the total mass of players on each edge,
defined as

∀e ∈ E, φe =
K

∑
k=1

∑
p∈Pk :e∈p

xk
p.

We observe that φe is a simple linear function of the mass
distribution x, so we can write in vector form φ = Mx, where
• φ ∈ RE is the vector of edge masses,
• x = (x1, . . . ,xK) ∈ m1∆P1 × ·· ·×mK∆PK is the vector

of mass distributions,
• M = (M1| . . . |MK), and for all k, Mk ∈ RE×Pk) is an

incidence matrix, such that for all e∈E, and all p∈Pk,
Mk

e,p = 1 if e ∈ p and 0 otherwise.
The set of mass distributions m1∆P1 ×·· ·×mK∆PK will

be denoted ∆ for convenience.
The edge masses determine the loss of each player:

the edge loss on e ∈ E is given by a positive, Lipschitz-
continuous, increasing function of φe, denoted ce(φe), and
the loss on a path is simply the sum of edge losses along
that path. The loss on a path p ∈Pk induced by a mass
distribution x = (x1, . . . ,xK) will be denoted

`k
p(x) = ∑

e∈p
ce((Mx)e) = MT

p (ce((Mx)e))e∈E

Then the expected loss of population Pk is ∑p∈Pk
xk

p`
k
p(x),

which will also be denoted
〈
xk, `k(x)

〉
, where we use 〈·, ·〉

to denote the Euclidean inner product.

B. Nash equilibria and the Rosenthal potential function

The set of Nash equilibria (also called Wardrop equilibria
in the transportation literature [17]) of the game is defined
as follows.

Definition 1 (Nash equilibria of the routing game). A mass
distribution x ∈ ∆ is a Nash equilibrium if for all k, and for
all p ∈ support(xk), `k

p(x) = minq∈Pk `
k
q(x). The set of Nash

equilibria will be denoted N .

In other words, a distribution is a Nash equilibrium if no
path with positive mass is suboptimal under that distribution.
Equivalently,

x ∈N ⇔∀y ∈ ∆,〈x− y, `(x)〉 ≤ 0. (1)

The Rosenthal potential was first defined for finite player
routing games, and later generalized to games with a con-
tinuum of players, see for example the analysis of Sand-
holm [16]. The potential function can be defined on the
product of simplexes ∆ as follows

f (x) = ∑
e∈E

∫ (Mx)e

0
ce(u)du

It can be viewed as the composition of the function f̄ : φ 7→
∑e
∫ φe

0 ce(u)du, and the linear function x 7→Mx. The function
f̄ has gradient ∇ f̄ (φ) = (ce(φe))e∈E , thus it is convex (the
edge losses are increasing by assumption). Therefore f is
convex (composition of a convex function and a linear
function) and has gradient

∇x f (x) = MT
∇ f̄ (Mx) = MT (ce((Mx)e))e∈E = `(x)

In other words, the gradient of the potential f is exactly the
loss vector field `. This property is essential in the analysis.

As a first consequence, by first-order optimality for differ-
entiable convex functions, x ∈ argminx∈∆ f (x) if and only if
∀y ∈ ∆, 〈x− y,∇ f (x)〉 ≤ 0 (in other words, the negative gra-
dient −∇ f (x) defines a supporting hyperplane to the feasible
set ∆, see 4.2.3 in [4] for a simple proof), which is exactly
the characterization of Nash equilibria in equation (1). It
follows that Nash equilibria are the minimizers of f over ∆.
We observe that the minimizer is not unique in general, as
the function f may be weakly convex.

C. Online learning, sublinear regret and Cesàro convergence

We now assume that the populations make routing de-
cisions at discrete time instants t ∈ N. At each iteration t,
each population Pk chooses a mass distribution xk(t), then
the loss vector `k(x(t)) is then revealed to Pk. When making
a routing decision at time t, players in Pk only have access
to the history of losses `k(x(τ)) and the mass distributions
xk(τ) of that population, up to τ = t − 1. In particular, the
players do not know the underlying edge loss functions or
path loss functions. Given this model of online learning, we
can define, for each population, the discounted cumulative
regret, which provides a natural measure of performance for
sequential decision problems, see for example [6].

Definition 2 (Discounted cumulative regret). Let (γt)t∈N be
a sequence of positive decreasing discount factors. Given
a sequence of losses (`k(t))t∈N, and a sequence of mass
distributions (xk(t))t∈N, the regret of population Pk with
respect to a mass distribution y ∈ mk∆Pk is defined as

R(t)
(γ)

(y) =
t

∑
τ=1

γτ

〈
xk(τ)− y, `k(τ)

〉
The discounted regret compares the discounted cumula-

tive loss of the population ∑
t
τ=1 γτ

〈
xk(τ)(s), `k(τ)

〉
to the

discounted cumulative loss of the stationary distribution y,〈
y,∑t

τ=1 γτ`
k(τ)
〉

. Finally, the discounted regret is said to be
sublinear if

limsup
t→∞

sup
y∈mk∆Pk

Rk(t)
(γ)(y)

∑
t
τ=1 γτ

≤ 0.

In Lemma 1, we recall the fact that if all populations have
sublinear regrets, then the sequence of mass distributions x(t)

converges to the set of Nash equilibria in the sense of Cesàro
means, as defined below:

Definition 3 (Convergence in the sense of Cesàro). A se-
quence (x(t)) of elements of ∆ is said to converge to a set
L ⊂ ∆ in the sense of Cesàro with weights (γt) (a positive
non-increasing sequence), if

lim
t→∞

d

(
∑

t
τ=1 γτ x(τ)

∑
t
τ=1 γτ

,L

)
= 0

where d(·,L) is the Euclidean distance to the set L. We write

x(t)
(γt )−→ L.



Lemma 1. Suppose that for all k, the discounted cumulative

regret Rk(t)
(γ) is sublinear. Then x(t)

(γt )−→N .

Proof. Since N is the set of minimizers of the potential f
over ∆, and f is continuous and ∆ is compact, it suffices to

show that f
(

∑
t
τ=1 γτ x(τ)

∑
t
τ=1 γτ

)
→ f ∗, the minimum of f over ∆.

By convexity of f , and the fact that ∇ f (x) = `(x), we have
for any y? ∈N

f

(
∑

t
τ=1 γτ x(τ)

∑
t
τ=1 γτ

)
− f ? ≤ ∑

t
τ=1 γτ f (x(τ))

∑
t
τ=1 γτ

− f (y?)

≤
∑

t
τ=1 γτ

〈
∇ f (x(τ)),x(t)− y?

〉
∑

t
τ=1 γτ

=
1

∑
t
τ=1 γτ

K

∑
k=1

Rk(τ)
(γ)(y

?k) (2)

which converges to zero if the regrets are sublinear.

We observe that by inequality (2), convergence rates of
the population regrets directly translate into a convergence
rate of the Cesàro means to N . However general, this result
remains limited in that it does not guarantee convergence
of the actual sequence (x(t)) of mass distributions. In order
to guarantee its convergence, we need to further restrict the
class of dynamics, as discussed in the next section.

II. MIRROR DESCENT DYNAMICS

Mirror descent is a general method for solving con-
strained convex optimization, proposed by Nemirovski and
Yudin [10]. It can be interpreted, as observed by Beck and
Teboule [1], as a gradient descent algorithm using a non-
Euclidean projection. Consider the problem

minimizex∈X f (x)

where X ⊆ Rn is a convex compact set, and f is convex
subdifferentiable. The Mirror Descent method with Bregman
divergence Dψ and learning rates (ηt) (a positive non-
increasing sequence) can be summarized in Algorithm 1.

Algorithm 1 Mirror descent algorithm with Bregman diver-
gence Dψ and learning rates (ηt)t .

for t ∈ N do
Query a subgradient vector g(t) ∈ ∂ f (x(t))
Update

x(t+1) = argmin
x∈X

f (x(t))+
〈

g(t),x− x(t)
〉
+

1
ηt

Dψ (x,x(t)) (3)

Here, Dψ is a Bregman divergence induced by a strongly
convex function ψ , defined as follows: for all x,y ∈X ,

Dψ(x,y) = ψ(x)−ψ(y)−〈∇ψ(y),x− y〉
The strong convexity assumption of ψ is equivalent to the
existence of a positive constant `ψ such that Dψ(x,y) ≥
`ψ

2 ‖x− y‖2, where ‖ · ‖ is chosen to be the Euclidean norm.
Note that by equivalence of norms, the choice of the norm
does not affect the strong convexity of ψ , although it may
affect the strong convexity constant `ψ . It follows that the
Bregman divergence is positive definite, i.e. Dψ(x,y) ≥ 0

f(x(t))

f(x(t+1))

f(x)

f(x(t)) + 〈g(t), x− x(t)〉
f(x(t)) + 〈g(t), x− x(t)〉+ 1

ηt
Dψ(x, x

(t))

(a) Large learning rate ηt .

f(x(t))

f(x(t+1))

f(x)

f(x(t)) + 〈g(t), x− x(t)〉
f(x(t)) + 〈g(t), x− x(t)〉+ 1

ηt
Dψ(x, x

(t))

(b) Small learning rate ηt .

Fig. 1: Illustration of a mirror descent update, using the KL-divergence as
a Bregman divergence. The linear approximation of the function around the
current iterate x(t) is given by f (x(t))+

〈
g(t),x− x(t)

〉
. The mirror descent

update minimizes the linear approximation plus a Bregman divergence term
Dψ (x,x(t)), which penalizes deviation from the current iterate x(t). The
learning rate parameter ηt affects the relative importance of both terms,
and the shape of the Bregman approximation to be minimized (dot-dashed,
in red). Since the Bregman divergence is lower-bounded by a quadratic (by
strong convexity of ψ), a smaller learning rate ηt results in a Bregman
approximation with stronger curvature (b).

for all x,y ∈X , with equality if and only if x = y. When
ψ(x) = 1

2‖x‖2
2, the Bregman divergence is Dψ(x,y) = 1

2‖x−
y‖2

2, and the mirror descent method reduces to projected
subgradient descent; in this sense, a Bregman divergence
is a generalization of the Euclidean distance, although in
general, it is not symmetric and does not satisfy the triangle
inequality. Figure 1 gives a geometric interpretation of the
mirror descent update (3).

We now define population dynamics for the routing game,
inspired from the mirror descent method for convex opti-
mization. Suppose that each population Pk uses a Bregman
divergence Dψk and a sequence of learning rates

(
ηk

t
)
, to

update the mass distribution given the previous vector of
losses `k(x(t)) ∈ RPk . The mirror descent dynamics can be
summarized in Algorithm 2.

Algorithm 2 Mirror descent dynamics for the routing game.
for t ∈ N do

For each k, the loss vector `k(x(t)) is revealed to population Pk.
For each k, the mass distribution xk is updated using the MD

iteration with divergence Dψk and learning rate
(
ηk

t
)

xk(t+1)
= argmin

xk∈mk∆Pk

〈
`k(x(t)),xk− xk(t)

〉
+

1
ηk

t
Dψk (x

k,xk(t))

III. CONVERGENCE RATES OF MIRROR DESCENT
DYNAMICS

We now prove the convergence of mass distributions (x(t))
to the set of equilibria N under mirror descent dynamics,
both in terms of Cesàro convergence and convergence of the
actual sequence (x(t)).

A. A discounted regret bound

We first derive a general bound on the discounted popu-
lation regret under mirror descent dynamics.

Lemma 2 (Discounted regret bound). Suppose that the mass
distribution (xk(t))t of population Pk obeys the mirror descent



dynamics defined in Algorithm 2, with Bregman divergence
Dψk (with strong convexity constant `ψk ), and learning rates
(ηk

t )t . Let (γt) be a sequence of discount factors. Then for
all t and all xk ∈ mk∆Pk ,

Rk(t)(xk)≤ L2
k

2`ψk

t

∑
τ=1

η
k
τ γτ +

γ1

ηk
1

Dψk (x
k,xk(1))+

t

∑
τ=2

Dψk (x
k,xk(τ))

(
γτ

ηk
τ

− γτ−1

ηk
τ−1

)
(4)

where Lk is an upper bound1 on ‖`k‖.

Proof. We seek to bound the sum ∑
t
τ=1 γτ

〈
`k(τ),xk(τ)− xk

〉
.

We first decompose〈
`k(τ),xk(τ)− xk

〉
=
〈
`k(τ),xk(τ+1)− xk

〉
+
〈
`k(τ),xk(τ)− xk(τ+1)〉

and bound each term separately.
For the first term, we have, by definition of the mir-

ror descent update (3), xk(τ+1) is the minimizer over
mk∆Pk of the convex function h(τ)(xk)=

〈
`k(τ),xk− xk(τ)

〉
+

1
ηk

τ

Dψk(x
k,xk(τ)). The gradient of this function is

∇h(xk) = `k(τ)+
1

ηk
τ

(
∇ψk(x

k)−∇ψk(x
k(τ))

)
Thus the optimality conditions applied to xk(τ+1) require that
for any xk ∈ mk∆Pk ,

〈
∇h(xk(τ+1)

),xk(τ+1)− xk
〉
≤ 0, thus〈

`k(τ)+
1

ηk
τ

(
∇ψk(x

k(τ+1)
)−∇ψk(x

k(τ))
)
,xk(τ+1)− xk

〉
≤ 0

observing that
〈(

∇ψk(xk(τ+1)
)−∇ψk(xk(τ))

)
,xk(τ+1)− xk

〉
=

Dψk(x
k,xk(τ)) − Dψk(x

k,xk(τ+1)
) − Dψk(x

k(τ+1)
,xk(τ)) and

using strong convexity of Dψk , we obtain a bound on the
first term〈

`k(τ),xk(τ+1)− xk
〉
≤ 1

ηk
τ

(
Dψk(x

k,xk(τ))

−Dψk(x
k,xk(τ+1)

)− `ψk

2
‖xk(τ+1)− xk(τ)‖2

)
(5)

For the second term, we can use Young’s inequality to obtain〈
`k(τ),xk(τ)− xk(τ+1)〉≤ ηk

τ

2`ψk

‖`k(τ)‖2 +
`ψk

2ηk
τ

‖xk(τ)− xk(τ+1)‖2

(6)
Combining inequalities (5) and (6), and summing over τ ,

t

∑
τ=1

γτ

〈
`k(τ),xk(τ)− xk

〉
≤ L2

k
2`ψk

t

∑
τ=1

η
k
τ γτ+

t

∑
τ=1

γτ

ηk
τ

(
Dψk (x

k,xk(τ))−Dψk (x
k,xk(τ+1))

and we can conclude by writing the Abel transformation
t

∑
τ=1

γτ

ηk
τ

(
Dψk (x

k,xk(τ))−Dψk (x
k,xk(τ+1))

=
γ1

ηk
1

Dψk (x
k,xk(1))

+
t

∑
τ=2

Dψk (x
k,xk(τ))

(
γτ

ηk
τ

− γτ−1

ηk
τ−1

)
− γt

ηk
t

Dψk (x
k,xk(t+1)

)

and bounding the last term by zero.

1Such a bound exists since ` is continuous on the compact set ∆

B. Cesàro convergence

We now consider two particular cases in which the bound
of Lemma 2 can be used to prove convergence in the Cesàro
sense.

Theorem 1 (Cesàro convergence under identical learning
rates). Suppose that all populations use the same sequence
of learning rates (ηt). Then for all k, the regret, discounted
by (ηt), is bounded as follows

sup
xk∈mk∆

Pk

Rk(t)
(η)(x

k) ≤ L2
k

2`ψk

t

∑
τ=1

(ητ)
2 + Dψk(x

k,xk(1)) (7)

This follows immediately from Lemma 2 by taking γt =ηt .
In particular, if (ηt) converges to 0 and ∑

t
τ=1 ητ → ∞ as

t→ ∞, then ∑
t
τ=1 η2

τ = o(∑t
τ=1 ητ), and

limsup
t→∞

sup
xk∈mk∆

Pk

Rk
(η)

(t)
(xk)

∑
t
τ=1 ητ

≤ 0.

In other words, the regret discounted by (ηt) is sublinear,

and, by Lemma 1, it follows that f (x(t))
(ηt )−→N , where the

convergence rate is O
(

∑
t
τ=1 η2

τ

∑
t
τ=1 ητ

)
. For example, if ηt = θ

( 1
t

)
,

then the convergence rate is O
(

1
log t

)
. If ηt = θ (t−α) with

α ∈ ( 1
2 ,1), then ∑

t
τ=1 η2

τ

∑
t
τ=1 ητ

=O
(

1
t1−α

)
. If ηt = θ

(
1√
t

)
, then the

convergence is O
(

log t√
t

)
, and if ηt = θ(t−α) with α ∈ (0, 1

2 ),

then ∑
t
τ=1 η2

τ

∑
t
τ=1 ητ

= O
(

t1−2α

t1−α

)
= O( 1

tα ).

Theorem 2 (Cesàro convergence under bounded Bregman
divergences). Suppose that for all k,

(i) The Bregman divergence Dψk is bounded over mk∆Pk ,
i.e. there exists Dk > 0 such that for all xk,yk ∈mk∆Pk ,
Dψk(x

k,yk)≤ Dk
(ii) The sequence of learning rates (ηt) is decreasing.

Then taking the discount sequence (γt) to be constant equal
to 1, we have the following regret bound: for all k and all t,

sup
xk∈mk∆

Pk

Rk(t)
(1)(x

k)≤ L2
k

2`ψk

t

∑
τ=1

η
k
τ +

Dk

ηk
t

(8)

Proof. Applying Lemma 2 with γt = 1 and observing that
1

ηk
τ

− 1
ηk

τ−1
≥ 0 by assumption on the learning rates, we have

Rk(t)
(1)(x

k)≤ L2
k

2`ψk

t

∑
τ=1

η
k
τ +

Dk

ηk
1
+Dk

t

∑
τ=2

(
1

ηk
τ

− 1
ηk

τ−1

)

where the telescoping sum is equal to 1
ηt
− 1

η1
.

In particular, if for all k, ∑
t
τ=1 ηk

τ = o(t) and 1
ηk

t
=

o(t), then the populations all have sublinear regret, and

by Lemma 1, f (x(t))
(1)−→ N , with convergence rate

O
(

∑
t
τ=1 ηk

τ

t + 1
tηk

t

)
. For example, if ηk

t = θ(t−αk) with αk ∈

(0,1), then ∑
t
τ=1 ηk

τ

t =O(t−αk) and 1
tηk

t
=O(t−(1−αk)), thus the

regret is sublinear, and the upper bound is O(t−min(αk,1−αk)).



C. Convergence of (x(t))

We now turn to the harder question of proving convergence
of (x(t)), as opposed to Cesàro convergence. We start from
the following simple observation: if the sequence f (x(t)) is
eventually non-increasing, then convergence in the sense of
Cesàro implies convergence. Indeed, if there exists t0 such
that for all t ≥ t0, f (x(t+1)) ≤ f (x(t)), then for any positive
sequence (γt) with ∑

t
τ=1 γτ → ∞,

f (x(t))− f ∗ ≤ ∑
t
τ=t0+1 γτ( f (x(τ))− f ∗)

∑
t
τ=t0+1 γτ

≤ ∑
t
τ=1 γτ

∑
t
τ=t0+1 γτ

∑
t
τ=1 γτ( f (x(τ))− f ∗)

∑
t
τ=1 γτ

where the first term is bounded and the second term is
the Cesàro mean. This allows us to immediately extend
convergence rates of the Cesàro means to convergence rates
of the actual sequence, whenever we can show the potential
values f (x(t)) are eventually monotone.

In the following Lemma, we argue that this is indeed the
case for mirror descent dynamics, whenever the sequence of
learning rates is vanishing and the potential f has Lipschitz
gradient.

Lemma 3 (Smooth potentials are eventually decreasing
under vanishing learning rates). Consider the mirror descent
dynamics defined in Algorithm 1, and suppose that

(i) The function f has L-Lipschitz gradient,
(ii) For all k, (ηk

t ) is decreasing and converges to 0.

Let t0 =min
{

t : ∀k,ηk
t ≤ L

`ψk

}
. Then for all t ≥ t0, the mirror

descent update guarantees

f (x(t+1))≤ f (x(t))

Proof. First, since f is assumed to have L-Lipschitz gradient,
then for all x,y ∈ ∆

f (x)≤ f (y)+ 〈∇ f (y),x− y〉+ L
2
‖x− y‖2 (9)

In other words, f is upper-bounded by a quadratic. The
argument of the proof is as follows: the mirror descent
dynamics are obtained by minimizing, at each iteration, an
approximation f̃ of the function around the current iterate
x(t), given by the linear part of f plus a Bregman divergence
term (see Figure 1). By strong convexity of the Bregman
divergence, this approximation f̃ is lower-bounded by a
quadratic, and when the learning rates are small enough, the
curvature is such that f̃ dominates f , with f (x(t)) = f̃ (x(t)).
Thus minimizing f̃ is guaranteed to decrease the potential
value f . More precisely, we can write the joint dynamics of
the mass distributions as follows: for all t,

x(t+1) = argmin
x∈∆

f (x(t))+
〈

x− x(t),∇ f (x(t))
〉
+

K

∑
k=1

1
ηk

t
Dψk (x

k,xk(t))

where ∇ f (x(t)) = `(x(t)) is the vector of losses, as discussed
in Section I-B. Let

f̃ (x) = f (x(t))+
〈

x− x(t),∇ f (x(t))
〉
+

K

∑
k=1

1
ηk

t
Dψk (x

k,xk(t))

Then by strong convexity of each Bregman divergence, we
have

f̃ (x)≥ f (x(t))+
〈

∇ f (x(t)),x− x(t)
〉
+

K

∑
k=1

`ψk

2ηk
t
‖xk− xk(t)‖2

≥ f (x(t))+
〈

∇ f (x(t)),x− x(t)
〉
+

L
2

K

∑
k=1
‖xk− xk(t)‖2 ∀t ≥ t0

= f (x(t))+
〈

∇ f (x(t)),x− x(t)
〉
+

L
2
‖x− x(t)‖2 ≥ f (x)

where the last inequality follows from the quadratic upper
bound (9). Therefore for all t ≥ t0, f̃ dominates f every-
where, and since x(t+1) = argminx∈∆ f̃ (x),

f (x(t+1))≤ f̃ (x(t+1))≤ f̃ (x(t)) = f (x(t))

which proves the claim.

In the routing game, assumption (i) of Lemma 3 holds,
since the gradient of the potential function f is exactly the
loss `(·), which is, by definition, Lipschitz continuous as a
linear combination of Lipschitz edge losses. Therefore, we
have the following theorem:

Theorem 3. Consider the routing game with mirror descent
dynamics defined in Algorithm 2, and suppose that for all k,
(ηk

t ) is decreasing and converges to 0. Then (x(t)) converges

to N , and f (x(t))− f ? = O(∑k
1

tηk
t
+

∑
t
τ=1 ηk

τ

t ).

IV. NUMERICAL EXAMPLE

We now illustrate some of the convergence results of
Section III.

0

1

2
3

4

Fig. 2: Routing game example. Population P1 travels from node 0 to 4,
with paths P1 = {(0,2,4),(0,2,3,4)}, and population P2 travels from node
1 to 4 with paths P2 = {(1,2,4),(1,3,4),(1,2,3,4)}.
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Fig. 3: Simulation results: mass distributions (left) and path
losses (middle) for both populations.



We simulate the following mirror descent dynamics: pop-
ulation P1 uses learning rates ηt = θ (t−α1), α1 = .5 with
a Euclidean Bregman divergence Dψ1(x,y) = ‖x− y‖2

2, and
population P2 uses learning rates η2

t = θ(t−α2), α2 = .2.
The trajectories of the mass distributions xk(t) and the path
losses `k(x(t)) are given in Figure 3. We observe that for
each population, the losses converge to a common limit for
all paths, which confirms convergence to the set of Nash
equilibria of the one-shot game. By Lemma 3, we expect
the potentials f (x(t)) to be eventually decreasing. This is
confirmed by Figure 4, which also illustrates that the regrets
of both populations converge to 0, as in Theorem 2.
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Fig. 4: The the top right figure shows the potential values f (x(t))− f ∗ in
log scale, and the bottom right figure shows the cumulative regret of each
population.

In this simple example, the potential function is, in fact,
strongly convex, since for each population, the adjacency
matrix is injective. As a result, the regret and the potentials
converge faster than the upper bounds provided by Theo-
rem 2.

0 1 2 3

Fig. 5: Second routing game example. Population P1 travels from node 0
to node 3.

We give a second example in which the potential function
is not strongly convex. To simplify, we consider a routing
game with a single population on the network of Figure 5.
Here, the incidence matrix is non-injective and the Nash
equilibrium is non-unique. We simulate dynamics with ηt =
θ(t−α), α = .6.By Theorem 1, we have a O(t1−α) upper
bound on the discounted per-round regret, supx R(t)

(η)
(x) =

supx
∑

t
τ=1 ητ〈`(x(τ)),x(τ)−x〉

∑
t
τ=1 ητ

. The results are given in Figure 6,
where the regret decay rate matches the rate given by the
upper bound.
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Fig. 6: Discounted per-round regret and corresponding upper bound
provided by Theorem 1.

V. CONCLUSION

We considered a class of online learning dynamics for
the routing game, in which each population updates its mass
distribution by applying a mirror descent update using its
vector of losses from the previous iteration. We derived a
bound on the discounted population regret, and applied it
to show that the mass distributions converge in the sense of
Cesàro means, and derived convergence rates under different
assumptions on the Bregman divergences and the learning
rates. We then argued that whenever the populations use
vanishing sequences of learning rates, the potentials f (x(t))
are eventually decreasing, which proves convergence of x(t)

to the set of equilibria, with the same convergence rates as the
Cesàro means. While we derived these results in the context
of the routing game, they hold for any potential game in
which the potential function is convex. This defines a broad
class of online learning dynamics which are guaranteed to
converge, together with upper bounds on the convergence
rates.
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