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Abstract— In order to address inefficiencies of Nash equilib-
ria for horizontal queuing congestion networks, we study the
Stackelberg routing game on parallel networks: assuming a
coordinator has control over a fraction of the flow, what is a
good way of routing that compliant flow so that the induced
Nash equilibrium is closer to the social optimum than the initial
Nash equilibrium?

We study Stackelberg routing for a new class of latency func-
tions, that models congestion on horizontal queuing networks.
We show that in this setting, optimal Stackelberg strategies can
be computed in polynomial time in the size of the network. We
introduce a candidate Stackelberg strategy, the non-compliant
first strategy, and prove it to be optimal. We apply these results
by modeling a transportation network in which a coordinator
can choose the routes of fraction of compliant agents, while the
rest of the agents choose their routes selfishly.

Some proofs are omitted for brevity, and are available for
the reviewer’s convenience in [6].

I. INTRODUCTION

A. Congestion Games and Stackelberg Routing

Nash equilibria of congestion games (or user optimal
assignments) have been extensively studied [8], [9], [11] and
are known to be inefficient compared to the system optimal
assignments, where a coordinator assigns flow as to minimize
a system-wide cost function [2], [13].

In order to address this inefficiency, Stackelberg routing
games have been proposed, in which a fraction of the agents
is centrally controlled, while the rest is free to act selfishly
[2], [10]. The objective of the coordinator is to assign the
compliant flow in a manner that minimizes a system-wide
cost function in anticipation of the rest of the flow’s selfish
response.

Congestion games and Stackelberg routing on parallel
networks have been studied extensively for the class of non-
decreasing latency functions, and it is known that computing
the optimal Stackelberg strategy is NP-hard in the number
of links [10]. This led to considering polynomial time ap-
proximate strategies such as Largest Latency First and Scale
[10], and several bounds have been shown on the efficiency
of these strategies. While this class of latency functions
provides a good model of congestion for a considerable range
of networks, such as communication networks, it does not
accurately model horizontal queueing congestion, such as
congestion on transportation networks [4], [7]. A new class
of latency functions is introduced in [6] to model conges-
tion on horizontal queuing networks. We study Stackelberg
routing for this new class of latency, which leads to novel
theoretic and algorithmic results.

B. Motivating Application: Compliant and Non-compliant
Drivers on Highway Networks

Advances in technology have made it possible to interact
with individual drivers on a traffic network and exchange
information through GPS-enabled smartphone applications
or before and after-market vehicular navigation systems. This
offers an opportunity to not only provide the driver with
relevant traffic information and collect anonymized data that
help improve traffic estimation, but also to provide routing
advice that can improve the overall efficiency of the network
by relieving congestion. However, when providing routing
advice, one needs to take into account the possible impact of
rerouting drivers on the traffic conditions of the network, and
the response of other drivers to this change in traffic condi-
tions. This fits into the framework of Stackelberg routing, in
which a fraction of the population of drivers is assumed to be
compliant to routing suggestions, and the rest of the drivers
are considered to be non-compliant. We call compliant a
driver who is connected to a central coordinator, through a
smartphone application or a navigation system, and is willing
(or has an external incentive) to follow routing suggestions
provided by the coordinator. Other drivers (drivers who are
not connected or who are simply not willing to follow
alternative routes) are described as non-compliant. These two
populations form respectively the leader and the followers in
the Stackelberg routing game.

In numerous transportation networks, two highly pop-
ulated areas can be connected by disjoint highways (we
consider one such example in the numerical results section).
Therefore, Stackelberg routing strategies on simple parallel
networks are of practical importance to traffic planners [3].
However, due to the limitations of congestion models dis-
cussed above, the existing literature on Stackelberg routing
is not readily applicable to practical traffic networks. The
present work addresses these limitations by considering a
new class of latency functions that better models congestion
for horizontal queuing network, in particular traffic networks.

C. Contributions

We study the Stackelberg routing game on parallel net-
works for the class of horizontal queuing congestion la-
tencies, and show that optimal Stackelberg strategies can
be computed in O

(
N2
)

time, where N is the number of
links in the network. This result contrasts with the class of
non-decreasing latency functions, for which computing the
optimal Stackelberg strategy is NP-hard [10]. We define in
particular the non-compliant first (NCF) strategy and prove
it to be optimal.



We then apply these results to model a real transporta-
tion network, and identify ranges of the flow demand and
compliance rates where optimal Stackelberg routing are most
efficient, and quantify the decrease in inefficiency achieved
by the NCF strategy.

These results are an encouraging and necessary step to-
wards a scalable, accurate model for optimal route assign-
ment on horizontal queueing networks with partial compli-
ance.

D. Organization of the Article

In Section II, we start by defining the congestion game
and the class of horizontal queuing congestion latencies,
then review some properties of Nash equilibria for horizontal
queuing networks. The main results on optimal Stackelberg
routing are presented in Sections III and IV, where a polyno-
mial time algorithm is presented for computing a provably
optimal Stackelberg strategy on N link parallel networks.
This is followed by numerical results that illustrate the effects
of optimal Stackelberg routing in Section V. We conclude
with a summary of our results and directions for future work
in Section VI.

II. PRELIMINARIES

A. The Model: Congestion games and the class of Horizontal
Queuing Latencies

We consider a non-atomic [12] congestion game on a
parallel network with a single source, a single sink (or
destination) and N parallel edges (or links) indexed by
n ∈ {1, . . . , N}. The network is subject to a constant positive
flow demand r at the source. We will denote by (N, r) an
instance of a network with N parallel links subject to demand
r.

A flow assignment for the instance (N, r) is a vector
x ∈ RN+ such that

∑N
n=1 xn = r where xn is the

flow on link n. We will denote by Supp (x) the support
of x, i.e. the set of links that hold strictly positive flow
{n ∈ {1, . . . , N} |xn > 0}.

Every (non-atomic) agent chooses a route to go from the
source to the destination, and in this simple setting, every
agent simply chooses a link. All agents on link n experience
the same latency, and we assume that the total flow xn
affects the latency on link n. As detailed in [6], in the case
of horizontal queuing networks, the latency also depends
on whether the link is in free-flow (the density is below
a critical density) or congested (the density is above the
critical density). Intuitively, a given flow xn corresponds to
two different configurations:
• either few agents moving fast (the density is low and

the link is in free-flow), in which case the latency is
low,

• or many agents moving slowly (the density is high and
the link is congested), in which case the latency is high.

Let mn ∈ {0, 1} be the congestion state of link n:

mn =

{
0 if n is in free-flow
1 if n is congested

(a) Examples of horizontal queu-
ing latency functions, defined in
II-A.

(b) Example of a single link free-
flow equilibrium (x̄3,r, m̄3)

Fig. 1: Horizontal queuing congestion latencies and single
link free-flow equilibria.

Then the latency on the link n is given by

ln : [0, xmax
n ]× {0} ∪ (0, xmax

n )× {1} → R+

(xn,mn) 7→ ln (xn,mn)

We further require the latency function to satisfy the
following properties:
• The latency is constant in free-flow: ∀xn ∈ [0, xmax

n ],
ln (xn, 0) = an > 0.

• limxn→xmax
n

ln (xn, 1) = ln (xmax
n , 0) = an

• xn 7→ ln (xn, 1) is decreasing on (0, xmax
n ).

This defines the class of horizontal queuing latencies, intro-
duced in [6]. The last property can be justified intuitively by
the following argument: as the density on the link increases,
the agents slow down (to avoid collision), therefore the flow
decreases and the latency increases.

Some examples of latency functions in this class are
illustrated in Figure 1a.

We further assume, to simplify our discussion, that the
free-flow latencies are different, and that links are ordered
by increasing free-flow latencies:

a1 < a2 < . . . < aN

Total System Cost: Every non-atomic agent on link n
experiences latency ln(xn,mn), therefore the total latency
experienced by the flow xn is Cn (xn,mn) = xnln (xn,mn)
and the total system cost (latency experienced by the total
flow) is simply

C (x,m) =

N∑
n=1

Cn (xn,mn) (1)

B. Nash Equilibria

In this section, we briefly review some properties of Nash
equilibria for congestion games on parallel networks for the
class of horizontal queuing latencies. These properties will
be useful in studying the Stackelberg routing game. For a
more detailed discussion and proofs, we refer the reader to
[6].

Consider a network instance (N, r). A pure Nash equilib-
rium, which we simply refer to as Nash equilibrium, is an



assignment in which every non-atomic agent cannot improve
her/his latency by switching to another link:

Definition 1: Nash Equilibrium
An assignment (x,m) ∈ RN+ × {0, 1}N feasible for the

network instance (N, r) is a Nash equilibrium, if ∀n
xn > 0⇒ ∀k ≤ N, ln(xn,mn) ≤ lk(xk,mk)

In particular, all links in the support of x have the same
latency, and if l0 denote the common latency on the support,
then the total system cost incurred by the network is simply
C(x,m) = rl0.

Single link free-flow equilibria: Let NE (N, r) denote the
set of Nash Equilibria for network instance (N, r). For the
class of horizontal queuing latency functions, there may exist
multiple Nash equilibria with different costs. For an example
of a network instance where this is the case, see [6]. The set
of Nash equilibria can then be partitioned into single link
free-flow equilibria (equilibria such that the last link in the
support is in free-flow) and congested equilibria (such that
all links in the support are congested). One can show that
these are indeed the only possible equilibria.

We now focus our attention on single link free-flow
equilibria. The following lemma characterizes the congestion
state vectors for these equilibria:

Lemma 1: Congestion states under single link free-flow
equilibrium

Let (x,m) ∈ NE (N, r). Assume that ∃j ∈ Supp (x)

such that mj = 0. Then m = (1, . . . ,
j−1
1 ,

j

0, . . . , 0) and
Supp (x) = {1, . . . , j}.
The lemma states that if some link k in the support of
a Nash equilibrium is in free-flow, this completely deter-
mines the congestion state vector of the equilibrium: links
{1, . . . , k − 1} are in the support and are congested, and
links {k + 1, . . . , N} are not in the support. Note that this
also determines the flow vector: since link k is in free flow
and in the support, its latency is lk(xk, 0) = ak. Therefore
every link in the support has the same latency, in particular
∀n ∈ {1, . . . , k − 1}, ln(xn, 1) = ak. The unique flow that
satisfies this equality is referred to as congestion flow. More
precisely,

Definition 2: Congestion flow
For 1 ≤ n < k ≤ N , the congestion flow x̂n (k) is defined

as the unique flow in (0, xmax
n ) that satisfies

ln(x̂n (k) , 1) = ak (2)
Note that the congestion flow x̂n (k) = ln(·, 1)−1(ak) is
a decreasing function of k since ak is increasing in k and
ln(·, 1)−1 is decreasing.

One can then show that all single link free-flow equilibria
are of the form

(
x̄k,r, m̄k

)
where

m̄k := (
1
1, . . . ,

k−1
1 ,

k
0, . . . ,

N
0) (3)

x̄k,r := (
1

x̂1 (k), . . . ,
k−1

x̂k−1 (k), r −
k−1∑
n=1

x̂n (k) , 0, . . . ,
N
0)

(4)

and
(
x̄k,r, m̄k

)
is an equilibrium if and only if it is a

feasible assignment, i.e. r −∑k−1
n=1 x̂n (k) ∈ [0, xmax

k ].
An example of single link free-flow equilibrium is shown

in Figure 1b.
Lemma 2: Existence of a single link free-flow Nash equi-

librium
∀r ∈

[
0,max1≤k≤N

{
xmax
k +

∑k−1
n=1 x̂n (k)

}]
, there ex-

ists a single link free-flow Nash equilibrium for the instance
(N, r).

This lemma in fact shows that if the set of Nash equi-
libria is non empty, then it contains a single link free-flow
equilibrium.

C. Best Nash Equilibrium
In order to study the inefficiency of Nash equilibria, and

the improvement of performance that we can achieve using
a Stackelberg game (in which a fraction of the total flow
is controlled by a central authority), we focus our attention
on best Nash equilibria and price of stability as a measure
of their inefficiency (see for example [1]). A best Nash
equilibrium (BNE) is defined to be a Nash equilibrium of
least total latency BNE (N, r) = arg min

(x,m)∈NE(N,r)
C (x,m).

The following theorem characterizes best Nash equilibria.
Theorem 1: Characterization of Best Nash Equilibria [6]
For a parallel network instance (N, r), the unique best

Nash equilibrium is the single-link free-flow equilibrium that
has smallest support

BNE (N, r) = arg min
(x,m)∈NEf(N,r)

{max [Supp (x)]}
Theorem 1 provides a simple characterization of the best
Nash equilibrium for any network instance (N, r), and shows
in particular that the best Nash equilibrium can be computed
in O(N2) where N is the size of the network: the best
Nash equilibrium can be computed by simply enumerating all
candidate single link free-flow equilibria (x̄k,rm̄k), starting
from the smallest support (k = 0). There are N such
candidate equilibria, corresponding to the congestion states
(0, . . . , 0) up to (1, . . . , 1, 0), and each candidate equilibrium
is a vector in RN that can be computed in O(N), which
corresponds to a worst-case time complexity of O(N2).

III. STACKELBERG ROUTING

In order to address the inefficiency of Nash equilibria
due to selfish routing and lack of coordination, we assume
that a fraction α of the flow is centrally controlled, and we
investigate possible strategies for improving the equilibria
of the network. Leader-follower routing games have been
considered in the transportation literature [2], [5]. However,
latency functions considered in the previous literature do
not model decrease in flow on a link as a result of density
buildup, while the class of latency functions introduced in
[6] better models horizontal queuing. In this section, we
setup the problem and introduce useful definitions. In the
next section, we show that optimal Stackelberg strategies
for the class of horizontal queuing latency can be computed
in polynomial time, and give a constructive algorithm for
computing such an optimal strategy.



A. Stackelberg routing game

We consider the following problem: given a network
instance (N, r) under constant flow demand r, assume a co-
ordinator (a central authority) has control over a fraction α of
the flow: the corresponding agents are compliant and willing
to let the coordinator choose their routes. The coordinator
(who plays the role of the leader in the Stackelberg game)
assigns the compliant flow αr according to a Stackelberg
strategy s that is a feasible flow assignment for the instance
(N,αr), i.e. s satisfies: sn ≤ xmax

n ∀n ≤ N and
∑
n sn =

αr.
We assume that the remaining flow (1 − α)r represents

selfish agents (who play the role of followers in the Stack-
elberg game), who will choose their routes after the Stack-
elberg strategy s is revealed. This induces an assignment
(t(s),m(s)) of the selfish flow at Nash equilibrium, and
we assume that the assignment s of compliant agents is
not affected after introducing the non-compliant flow on the
network.

Since s may induce multiple Nash equilibria, we define
the assignment (t(s),m(s)) to be the best such equilibrium
(as defined in Section II-C). To characterize this Nash
equilibrium, which we refer to as the induced equilibrium
by strategy s, we note that the flow on link n is simply
sn + tn(s), and we have for all n ∈ Supp (tn(s)) and for all
k ∈ {1, . . . , N}:

ln (sn + tn(s),mn(s)) ≤ lk (sk + tk(s),mk(s))

Equivalently, all links that are in the support of the selfish
flow assignment t(s) have a common latency l0 in the
induced equilibrium, and links that are not in the support
have latency greater than or equal to l0.

This can be summarized in the following definition of a
Stackelberg strategy. Let (N, r, α) denote an instance of the
Stackelberg game played on the network instance (N, r) with
compliance rate α.

Definition 3: Stackelberg Strategy
Consider an instance (N, r, α) of the Stackelberg routing

game. A Stackelberg strategy for this instance is an assign-
ment s of the compliant flow αr that is feasible for the
instance (N,αr), and which induces best Nash equilibrium
(t(s),m(s)) of the non-compliant flow, as defined in Section
II-C, such that s+t(s) is feasible for the instance (N, r) and
∃l0 > 0 such that

∀n ∈ Supp (t(s)) , ln (sn + tn(s),mn(s)) = l0

∀n /∈ Supp (t(s)) , ln (sn,mn(s)) ≥ l0
This extends the definition usually used in the congestion
games literature, see for example [10].

We will denote by S(N, r, α) ⊂ RN the set of Stackelberg
strategies for network instance (N, r, α).1

We next show that the induced Nash equilibrium has one
link in free-flow:

1Note that a feasible flow assignment s of compliant flow may fail to
induce a Nash equilibrium (t,m) and therefore is not considered to be a
Stackelberg strategy.

Lemma 3: Characterization of the induced Nash Equilib-
rium

Let s ∈ S(N, r, α) be a Stackelberg strategy for the
Stackelberg instance (N, r, α), and (t(s),m(s)) its induced
best Nash equilibrium. Then the last link in the support of
t(s) is in free-flow, i.e. mmax Supp(t(s)) = 0.

Proof: Note that (t(s),m(s)) is the best Nash equilib-
rium for the instance (N,αr) and latencies

l̃n : [0, xmax
n − sn]× {0, 1} −→ R+

(xn,mn) 7−→ ln(sn + xn,mn)

Latencies l̃n satisfy the assumptions of the horizontal queu-
ing latencies class. Therefore, by Theorem 1, we immediately
have the result.

B. Optimal Stackelberg strategies

In this section we solve for optimal Stackelberg strategies,
i.e. Stackelberg strategies that induce Nash equilibria of
minimal cost.

Definition 4: Optimal Stackelberg strategy
An optimal Stackelberg strategy s∗ is a solution to the

optimization problem

s∗ = arg min
s∈S(N,r,α)

C (s+ t(s),m(s))

Here (t(s),m(s)) is the equilibrium induced by s.
We also introduce a definition that will be useful in

proving the main result.
Definition 5: At least i-congested link
Consider a network under feasible flow assignment

(x,m). Link n is said to be at least i-congested (i ≥ n+ 1)
under assignment (x,m) if it is congested (mn = 1) and its
latency is at least ai

ln(xn,mn) ≥ ai
This is equivalent to mn = 1 and xn ≤ x̂n (i). If the
above holds with equality, we say that the link is exactly
i-congested.
Note that if j ≥ i ≥ n + 1, then if link n is at least j-
congested under (x,m), then it is also at least i-congested
under (x,m).

And if (t,m) is a single link free-flow equilibrium, and
i = max Supp (t), then all links n ∈ {1, . . . , i − 1} are
exactly i-congested.

IV. COMPUTING THE OPTIMAL STACKELBERG STRATEGY

In this section, we show the following result: the optimal
Stackelberg strategy can be computed in polynomial time for
parallel networks with N links for the class of horizontal
queuing congestion functions defined in II-A. This result

To see this, consider the following 2-link network such that link 1 is
faster a1 < a2 and has larger capacity xmax

1 > xmax
2 . Now assume that

the network is subject to flow demand r = xmax
1 +ε and most of the flow is

compliant αr = xmax
1 . Consider the following assignment: s = (xmax

1 , 0).
Assuming that the assignment of compliant agents is not affected by

introducing the non-compliant flow, we have for any assignment t of non-
compliant flow, t1 = 0 and t2 > 0. Therefore t is not at Nash equilibrium
since Supp (t) = {2} and l2(s2 + t2,m2) > l1(s1, 0) (non compliant
agents are forced to use less efficient link 2).



contrasts with the class of non-decreasing latency functions
where the optimal Stackelberg strategy is shown to be NP-
hard to compute, see [10].

The optimal Stackelberg strategy in our case corresponds
to:
• First computing the best Nash equilibrium of non-

compliant agents alone, (t̄, m̄) = BNE (N, (1− α)r)
• Then assigning the compliant flow by filling the remain-

ing links (i.e. those that are not congested under (t̄, m̄)),
up to maximum capacity, starting with the faster links.

Intuitively, the best induced Nash equilibrium (t(s),m(s))
of any Stackelberg strategy s will be more congested than
the best Nash equilibrium (t̄, m̄) of instance (N, (1− α)r).
So if we can find a strategy s̄ that induces equilibrium (t̄, m̄)
and that has minimal cost, then one expects this strategy to
be optimal. Next, we detail this idea by defining a candidate
Stackelberg strategy s̄ that will later be shown to be optimal.

A. A candidate Stackelberg strategy: Non-Compliant First
Let (t̄, m̄) denote the best Nash equilibrium for the in-

stance (N, (1− α)r). Let k = max Supp (t̄) be the last link
in the support of t̄. Then we have from Equations (4) and

(3), m̄ = (1, . . . , 1,
k
0, . . . , 0) and

t̄ =

(
x̂1 (k) , . . . , x̂k−1 (k) , (1 − α)r −

k−1∑
n=1

x̂n (k) , 0, . . . , 0

)
i.e. links {1, . . . , k − 1} are k-congested, and link k is in

free-flow. Figure 2a shows best Nash equilibrium (t̄, m̄) on
a sample network, where the latency in congestion ln(., 1)
is taken to be affine for simplicity.

We now define Stackelberg strategy s̄ as the optimal
assignment (i.e. of least cost) of compliant flow αr that
induces equilibrium (t̄, m̄). It is easy to see that s̄ is
simply given by assigning the compliant flow to remaining
links {k, k + 1, . . . , N} successively, each up to maximum
capacity. The strategy s̄ will assign xmax

k − t̄k on link k,
then xmax

k+1 on link k + 1, xmax
k+2 on link k + 2 and so on.

Let l = min{n|αr − (
∑l−1
n=k x

max
n − tk) ≥ 0} be the least

efficient link used by the Stackelberg assignment. Then s̄ is
given by

s̄ = (0, . . . ,
k−1
0 , xmax

k − t̄k, xmax
k+1, . . . , x

max
l−1 ,

αr − (

l−1∑
n=k

xmax
n − t̄k),

l+1
0 , . . . , 0) (5)

Equivalently, the total assignment x̄ = s̄+ t̄ is given by

x̄ = (x̂1 (k) , . . . , x̂k−1 (k) , xmax
k , xmax

k+1, . . . , x
max
l−1 ,

r −
k−1∑
n=1

x̂n (k)−
l−1∑
n=k

xmax
n ,

l+1
0 , . . . , 0) (6)

and the corresponding latencies are

l̄ = (ak, . . . , ak, ak+1, . . . , al,
l+1
0 , . . . , 0) (7)

(a) Best Nash equilibrium (t̄, m̄)
of non-compliant flow (1 − α)r.
All links in the support {1, . . . , k}
have the same latency ak .

(b) Equilibrium induced by candi-
date Stackelberg strategy s̄. Flows
that correspond to the Stackelberg
strategy s̄ are highlighted.

Fig. 2: Non-compliant first (NCF) strategy. In this example,
latencies are taken to be affine in congestion for simplicity,
the results hold for the general class of horizontal queuing
latencies.

We will denote by NCF(N, r, α) = s̄ the non-compliant
first strategy for the Stackelberg instance (N, r, α).

Figure 2b shows the total flow x̄n = s̄n + t̄n on each
link. Links {1, . . . , k − 1} are exactly k-congested, links
{k, . . . , l − 1} are in free-flow and at maximum capacity,
and the remaining flow goes on link l.

In the next section we show that strategy s̄ is indeed an
optimal Stackelberg strategy.

B. The Non-Compliant First strategy is optimal

Theorem 2: Optimal Stackelberg Strategy
s̄ = NCF(N, r, α) is an optimal Stackelberg strategy for

the Stackelberg instance (N, r, α).
Proof: Let s ∈ S(N, r, α) be a Stackelberg strategy

for the Stackelberg instance (N, r, α) and (t,m) be the best
induced Nash equilibrium for the non-compliant flow. We
will show that C(x,m) ≥ C(x̄, m̄), where x = s + t and
x̄ = s̄+ t̄.
The proof proceeds as follows: we first show that links
{1, . . . , l − 1} are more congested under assignment (x,m)
than under (x̄, m̄), in the following sense: these links have
worse latency ln(xn,mn) ≥ ln(x̄n, m̄n), and hold less flow
xn ≤ x̄n. Then we conclude by lower bounding the cost
C(x,m).

Let k′ = max Supp (t) be the link with largest free-flow
latency, in the support of the non-compliant flow. By Lemma
3, we have mk′ = 0, i.e. link k′ is in free-flow under
assignment (x,m) = (s + t,m). We start by showing that
k′ ≥ k where k = max Supp (t̄).

Lemma 4: Comparing the supports of induced equilibria
The last link in the support of t(s) has higher free-flow

latency than the last link in the support of t̄: k′ ≥ k.
Intuitively, since (t̄, m̄) is the best Nash equilibrium of the

non-compliant agents when they are not sharing the network
with any other flow, the cost of this assignment (t̄, m̄) is less
than the cost of any equilibrium after introducing additional
flow s.
Proof: First note that (s+ t(s),m) restricted to Supp (t(s))



is at Nash equilibrium. Then since link k′ is in free-
flow we have lk′(sk′ + tk′(s),mk′) = ak′ , and since
k′ ∈ Supp (t(s)), we have by Definition 3 that any other
link has higher latency. In particular, ∀i ∈ {1, . . . k′ − 1},
li(si + ti(s),mi) ≥ ak′ , thus si + ti(s) ≤ x̂i (k′). Therefore
we have

∑k′

n=1 sn + tn(s) ≤ ∑k′−1
n=1 x̂n (k′) + xmax

k′ . But∑k′

n=1(sn + tn(s)) ≥ ∑
n∈Supp(t) tn(s) = (1 − α)r since

Supp (t) ⊂ {1, . . . , k′}. Therefore

(1− α)r ≤
k′−1∑
n=1

x̂n (k′) + xmax
k′

and by Lemma 2 applied to a network with k′ links,
this guarantees the existence of a single-link free-flow Nash
Equilibrium for the network instance (k′, (1 − α)r). Let
(t̃, m̃) ∈ Rk′ ×{0, 1}k

′
be such an equilibrium. The cost of

(t̃, m̃) is (1−α)rl0 where l0 ≤ ak′ is the free-flow latency of
the last link in the support of t̃. Thus C(t̃, m̃) ≤ (1−α)rak′ .

Then ((t̃1, . . . , t̃k′ , 0, . . . , 0), (m̃1, . . . , m̃k′ , 0, . . . , 0) ∈
RN ×{0, 1}N is clearly a Nash equilibrium for the instance
((1−α)r,N), and has the same cost C(t̃, m̃) ≤ (1−α)rak′ .
Since by definition (t̄, m̄) is the best Nash equilibrium for
the instance ((1−α)r,N) and has cost (1−α)rak, we must
have (1−α)rak ≤ (1−α)rak′ , i.e. ak ≤ ak′ . This completes
the proof of the Lemma.
Using the lemma, we can now show that links {1, . . . , l−1}
are more congested under assignment (x,m) than candidate
assignment (x̄, m̄).

Since k′ ∈ Supp (t), we have from Definition 3 of a
Stackelberg strategy and its induced equilibrium, that the
latency on k′ is smaller than the latency on any other link.
Thus ∀n ∈ {1, . . . , k′ − 1}, ln(xn,mn) ≥ lk′(xk′ ,mk′) ≥
ak′ , i.e. ∀n ∈ {1, . . . , k′ − 1}, n is at least k′-congested
under assignment (x,m). We also have by definition of
the candidate assignment (x̄, m̄) and the resulting latencies
given by Equation (7), ∀n ∈ {1, . . . , k − 1}, n is exactly
k-congested under assignment (x̄, m̄). Thus using the fact
that k′ ≥ k, we have ∀n ∈ {1, . . . , k − 1}, ln(xn,mn) ≥
ak′ ≥ ak = ln(x̄n, m̄n), and xn ≤ x̂n (k′) ≤ x̂n (k) = x̄n,
obtained by inverting the latency function ln(.,mn).

We have from Equation (6) that ∀n ∈ {k, . . . , l−1}, n is in
free-flow and at maximum capacity under assignment (x̄, m̄)
(i.e. x̄n = xmax

n and ln(x̄n) = an). Thus ∀n ∈ {k, . . . , l−1},
ln(xn,mn) ≥ an = ln(x̄n, m̄n) and xn ≤ xmax

n = x̄n.
Therefore we have

ln(xn,mn) ≥ ln(x̄n, m̄n) ∀n ∈ {1, . . . , l − 1} (8)
xn ≤ x̄n ∀n ∈ {1, . . . , l − 1} (9)

Note that ∀n ∈ {1, . . . , k}, ln(x̄n, m̄n) = ak ≤ al, and
∀n ∈ {k, . . . , l − 1}, ln(x̄n, m̄n) = an ≤ al, thus we have

ln(x̄n, m̄n) ≤ al ∀n ∈ {1, . . . , l − 1} (10)

Also note that each link n ∈ {l, . . . , N} has latency at
least an (the latency on a link is always greater than the
free-flow latency) and an ≥ al, thus

ln(xn,mn) ≥ al ∀n ∈ {l, . . . , N} (11)

We can now lower-bound the cost of the assignment
(x,m) where x = s + t and (t,m) is the best Nash
equilibrium induced by s. We have

C(x,m) =

N∑
n=1

xnln(xn,mn)

=

l−1∑
n=1

xnln(xn,mn) +

N∑
n=l

xnln(xn,mn)

≥
l−1∑
n=1

xnln(x̄n, m̄n) +

N∑
n=l

xnal

using (8) and (11). Then rearranging the terms we have

C(x,m) ≥
l−1∑
n=1

(xn−x̄n)ln(x̄n, m̄n)+

l−1∑
n=1

x̄nln(x̄n, m̄n)+

N∑
n=l

xnal

Then by (9) and (10) we have ∀n ∈ {1, . . . , l− 1}, xn −
x̄n ≤ 0 and ln(x̄n, m̄n) ≤ al, thus

C(x,m) ≥
l−1∑
n=1

(xn − x̄n)al +

l−1∑
n=1

x̄nln(x̄n, m̄n) +

N∑
n=l

xnal

= al

(
N∑

n=1

xn −
l−1∑
n=1

x̄n

)
+

l−1∑
n=1

x̄nln(x̄n, m̄n)

= al

(
r −

l−1∑
n=1

x̄n

)
+

l−1∑
n=1

x̄nln(x̄n, m̄n)

But al
(
r −∑l−1

n=1 x̄n

)
= x̄lll(x̄l, m̄l) since Supp (x̄) =

{1, . . . , l} and ll(x̄l, m̄l) = al. Therefore

C(x,m) ≥ x̄lll(x̄l, m̄l) +

l−1∑
n=1

x̄nln(x̄n, m̄n)

= C(x̄, m̄)

Therefore the NCF strategy is an optimal Stackelberg strat-
egy, and it can be computed in polynomial time since it
is generated in linear time after computing the best Nash
equilibrium BNE (N, (1− α)r), which was shown to be
quadratic in N .

Finally, we note that the NCF strategy is, in general,
not the unique optimal Stackelberg strategy, but the set of
optimal Stackelberg strategies can be easily generated from
the NCF strategy. We do not describe this procedure for
brevity.

V. NUMERICAL RESULTS

A. Optimal Stackelberg routing on an example network

In this section, we apply the previous results to a scenario
of freeway traffic from the San Francisco Bay Area. Four
parallel highways are chosen starting in San Francisco and
ending in San Jose: I-101, I-280, I-880 and I-580 (shown in
Figure 3a). We analyze the inefficiency of Nash equilibria



(a) Map of parallel highway network
showing four parallel highways con-
necting San Francisco to San Jose.
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(b) Latency (minutes) vs. demand
(cars/minute) for parallel highway
routes.

Fig. 3: Example highway network connecting San Francisco
to San Jose.

due to selfish routing and lack of coordination, and show
how optimal Stackelberg routing strategies (non-compliant
first strategy) can improve these conditions. We first use
price of stability [1] to measure the improvement in per-
formance achieved by optimal Stackelberg routing. Price of
Stability is defined as the ratio between the cost of the
best Nash equilibrium, and the cost of the social optimum:
POS (N, r) = C(BNE(N,r))

C∗ where C∗ = min(x,m) C(x,m).
Figure 3b shows the latency functions for the highway

network, which we derived assuming a triangular fundamen-
tal diagram for each highway stretch (the resulting latency
functions are decreasing harmonic in congestion. See [6] for
a detailed derivation of latency functions from a triangular
fundamental diagram). Under free-flow conditions, I-101
is the fastest route available between San Francisco and
San Jose. But when I-101 becomes congested, other routes
represent viable alternatives. To analyze how congestion
increases with demand, we compute total network latency
profiles (Equation (1)) for optimal Stackelberg strategies as
a function of demand. In addition, to show how congestion
improves as a function of fraction of compliance α, we
compute network latency profiles over a range of compliance
rates.

The numerical results are summarized in Figure 4. The
price of stability plot in Figure 4a shows that even with a
small compliance rate, Stackelberg routing can decongest
a given link n for a fixed flow demand, when the Nash
equilibrium is slightly above maximum capacity on link n.
This shows the significant benefits of Stackelberg routing,
especially around the critical regions of flow demand where
the support of the best Nash equilibrium changes.

We also note that for a fixed compliance rate α,
Stackelberg routing can delay the congestion of a
particular link n, i.e. increase the critical flow demand
r(n) above which link n becomes congested (formally,
r(n) = infr {r|n is congested under BNE (N, r)}).
Let r(n,α) denote the critical flow for the
Stackelberg instance (N, r, α), i.e. r(n,α) =
infr {r|n is congested under (t(s̄),m(s̄)), s̄ = NCF(N, r, α)}.
Then the delay range (the increase in critical flow demand
r(n,α) − r(n)) is proportional to the compliance rate.
Observing the behavior around the 600-800 cars/minute,
it takes about 30 extra cars/minute to congest the second
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Fig. 4: Results for network efficiency on parallel highway
link example.
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Fig. 5: Price of stability profile

link with 5% compliance, about 100 cars/minute for 15%
compliance, while for 50% compliance, the second link
appears to only congest near network capacity.

While price of stability describes how inefficient the best
Nash equilibrium is with respect to the social optimal strat-
egy, another metric, value of altruism [2], was introduced
to show how performant a particular Stackelberg strategy is
with respect to the best Nash equilibrium (0% compliance).
Value of altruism is defined by:

V OA (N, r, α) =
mins∈S(N,r,α) C (s+ t(s),m(s))

C (BNE (N, r))

Value of altruism for the example network is shown in
Figure (4b). The figure illustrates the “delaying” effect of
optimal Stackelberg routing. A small compliance fraction (5-
15% on this network) can decongest a given link n when the
demand is around the critical demand for that link (r(n) ≤
r < r(n,α)), but the link will be congested again for higher
values of demand (r ≥ r(n,α)) resulting in a value of altruism
of 1.

The importance of efficient computation of optimal Stack-
elberg strategies can be seen by the complete demand-
compliance fraction profile generated in Figure 5. If the
amount of compliance is viewed as a cost to some central
controller, then the tiers visible in Figure 5 (take r = 1000,
.3 ≤ α ≤ .5) can be seen as regions of potential waste. If
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Fig. 6: Computation time of optimal Stackelberg strategy
relative to network size.

a central controller can predict a demand in a range around
1000 cars/minute and a maximum compliance fraction of .5,
then the controller can reference the two-dimensional profile
and reduce the compliance fraction to a region around .4,
since any compliance above 30% and less than 50% does
not improve the performance of the network.

B. Scaling of optimal Stackelberg strategy algorithm on size
of network

To illustrate the performance of the algorithm as the
size of the network scales up, the computation time of the
optimal Stackelberg strategy was measured for 500 randomly
generated networks. The number of links in a network
was chosen between 3 and 1500 and the latency functions
of each link correspond to randomly generated triangular
fundamental diagrams. The compliance rate was arbitrarily
chosen to be 40% and the demand was chosen to be 70%
that of the maximum capacity of the network at best Nash
equilibrium. The results are shown in Figure 6a.

As shown in Section III-B, the worst-case complexity of
computing optimal Stackelberg assignments is quadratic in
the size of the network, which is verified experimentally as
shown in Figure 6a.

Figure 6b shows that the computation time of the optimal
Stackelberg strategy increases as the demand increases. This
is due to the fact the best Nash equilibrium is computed using
sequential search: the algorithm tests if a Nash equilibrium
exists for a particular support, and if it fails to find such
an equilibrium, increases the size of the support. As the
demand increases, the algorithm will have to check for larger
supports, which explains the increase in computation time.

VI. DISCUSSION AND OPEN PROBLEMS

In order to address the inefficiency of Nash equilibria on
horizontal queuing networks, we considered the Stackelberg
routing game where a central coordinator has control over a
fraction α of compliant agents. We proved that for the class
of horizontal queuing congestion latencies introduced in [6],
the non-compliant first (NCF) strategy is optimal, and that it
can be computed in quadratic time in the size of the network.
We illustrated these results using a benchmark network for
which we computed the decrease in inefficiency that can be
achieved using optimal Stackelberg routing. This example
showed that when the demand is near critical flows r(n),

optimal Stackelberg routing can achieve a significant increase
in efficiency even for small values of compliance rate α.

These results show that careful routing of a small com-
pliant population can significantly improve the efficiency
of the network. It is also worth noting that these results
indicate that for specific demand and compliance ranges,
Stackelberg routing can be completely ineffective. Therefore
identifying the ranges for which optimal Stackelberg routing
does improve the efficiency of the network is crucial for
effective planning and control.

This work offers several directions of future research:
the work presented here only considers parallel networks
under static conditions (constant flow demand r, and static
equilibria): one question is how one may dynamically steer
the system from one equilibrium to a better one. For example,
consider the case in which the agents are stuck in a congested
equilibrium, and assume a coordinator has control over a
fraction of the flow. Can the coordinator steer the system to
a single link free-flow equilibrium? And what is the minimal
compliance rate needed to achieve this?

Another question is how robust are the NCF strategy
results? Do they hold for general network topologies? The
extension of our results to general network topologies is still
an open problem.
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