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Abstract— We study inefficiencies in horizontal queueing

networks due to the selfish behavior of agents, by comparing

social optima to Nash equilibria. The article expands studies

on routing games which traditionally model congestion with

latency functions that increase with the flow on a particular

link. This type of latency function cannot capture congestion

effects on horizontal queueing networks. Latencies on horizon-

tal queueing networks increase as a function of density, and flow

can decrease with increasing latencies. For example, this class of

latency functions arises in transportation networks. For static

analysis of horizontal queuing on parallel-link networks, we

show that there are multiple Nash equilibria with different total

costs, which contrasts results for increasing latency functions.

We present a novel algorithm, quadratic in the number of

links, for computing the Nash equilibrium that minimizes total

cost (best Nash equilibrium). The relative inefficiencies of best

Nash equilibria are evaluated through analysis of the price

of stability, and analytical results are presented for two-link

networks. Price of stability is shown to be sensitive to changes in

demand when links are near capacity, and congestion mitigation

strategies are discussed, motivated by our results.

I. INTRODUCTION

A. Routing games and Nash equilibria

Routing games (or congestion games) form an important
class of non-atomic games that is used to model the inter-
action of agents who are sharing resources on a network,
in which the cost on each edge depends on the fraction of
agents using that edge. Extensive work has been dedicated
to studying Nash equilibria (or user optimal assignments) of
congestion games [9], [11], [14], in which all players are
assumed to choose the routes that minimize their respective
individual costs. Under some assumptions on the latency
functions, Nash equilibria can be computed as a solution
of a convex optimization problem [6]. Nash equilibria of
congestion games are known to be inefficient compared to
system optimal assignments, in which a coordinator, or a
central authority, assigns flow as to minimize a cost function
over all players [2], [18]. Other variants of congestion games
exist in the game theory literature [3], [10].

B. A new class of latency functions

The class of latency functions that have been studied so far
in routing games literature rely on the following assumptions:
if l(x) is the latency on a link, where x is the flow, then l is
assumed to be non-decreasing, and x 7! xl(x) is assumed
to be convex [13]. While this class of latency functions
provides a good model of congestion for a considerable
range of networks, such as communication networks, it
does not accurately model horizontal queueing congestion,

such as congestion on transportation networks [4], [17], [8].
Intuitively, a given flow x on a road can correspond to

• either a large concentration of agents moving slowly
(high density on a congested road), in which case the
latency is large,

• or few cars moving quickly (low density), in which case
the latency is small.

Due to this phenomenon, the latency is not uniquely deter-
mined by the flow, and depends on the congestion state of
the link. As we later show, one simple way of modeling this
phenomenon is to have an additional binary argument m in
the latency function l(x,m) to specify whether the link is
congested (m = 1) or is in free-flow (m = 0). For example,
in transportation networks, latency functions derived from a
macroscopic model of traffic flow developed by Lighthill and
Whitham [8], can be expressed in the above form l(x,m).
One interesting result is that the latency under congestion
l(x, 1) is a decreasing function of flow. Intuitively, as the link
becomes more congested, agents slow down, so their latency
increases, and the amount of flow on the link decreases.

A large body of literature in horizontal queueing theory
has studied game-theoretic concepts, such as dynamic traffic
assignment for user equilibria [5], [9] and system optimal
assignments [18]. Due to the complexities of modeling hor-
izontal queueing, approaches to solving the user equilibrium
on general networks usually involve non-linear optimization
techniques that limit the size of networks that can be consid-
ered. By restricting our analysis to parallel-link networks, we
exploit the structure of the network to improve upon previous
approaches to user equilibria computation.

C. Contributions of the article
We introduce a new class of latency functions that is ex-

pressive enough to model congestion on horizontal queuing
networks, and study, for this new class of latency functions,
the Nash equilibria of the congestion game on parallel net-
works. We consider a congestion game on a parallel network,
where each link has a dual-mode latency function: latency
is constant in free-flow, and a decreasing function of flow in
congestion. This leads to novel results for characterizing and
computing Nash equilibria:

• We show that there is no essential uniqueness of Nash
equilibria (not all Nash equilibria have equal total costs),
unlike point-queueing models usually considered in
congestion games [14].1

1Under different modeling assumptions, similar non-uniqueness results
exist for capacitated networks.[15]



• We show that for a given instance (N, r) of a parallel
network of N links, subject to a constant demand r, we
characterize the structure of the flow in the best Nash
equilibrium (the Nash equilibrium that minimizes the
total network latency) and show that the equilibrium
can be computed in O

�

N2

�

time.
• We give an analytical solution to the price of stability

on a two-link parallel network. This gives insight into
the qualitative behavior of congestion caused by Nash
equilibria on horizontal queueing networks. In partic-
ular, when the lowest-latency link in a network nears
capacity, diverting only a small amount of flow to a
slower link can avert congestion completely.

These results provide a framework for efficient computation
of Nash equilibria on parallel networks, which, in turn, give
a high-level explanation of congestion patterns on such net-
works. While the assumption of a parallel network may seem
restrictive, there are many examples of highway networks in
populous areas (such as the San Francisco bay area), in which
such networks can model congestion via horizontal queueing
and the parallel link structure is an accurate description.
Additionally, highway networks often suffer from congestion
due to selfish routing, and would benefit from the analysis
of horizontal queueing Nash equilibria.

D. Organization
We start by defining the model and introducing a new

class of latency functions in Section II, and show as an
example how such latency functions can be derived from
known macroscopic models of traffic flow. In Section III, we
study Nash equilibria of congestion games for this new class
of latency, and show that the essential uniqueness property
does not hold. We then bound the number of Nash equilibria
and give a tractable algorithm for computing the set of Nash
equilibria. In Section IV we characterize in particular the
best Nash equilibrium and give an explicit algorithm for its
computation. In Section V-B, we study the inefficiency of
best Nash equilibria using price of stability as the measure.
We conclude with a summary of our results and directions
for future work in Section VI.

II. THE MODEL

A. Routing Games on on Parallel Edge Network
We consider a non-atomic2 congestion game on a parallel

network similar to the one studied in [13], shown in Fig-
ure 1. The network has a single source and a single sink.
Connecting the source and sink are N parallel edges (or
links) indexed by n 2 {1, . . . , N}. The network is subject
to a constant positive flow demand r at the source. We will
denote by (N, r) an instance of a network with N parallel
links subject to demand r. A feasible flow assignment for the
instance (N, r) is a vector x 2 RN

+

such that
P

N

n=1

x
n

= r
where x

n

is the flow on link n.

2When fractional flows are allowed, the players are said to be non-atomic
[16]. The choice of atomic versus non-atomic players in congestion games
is similar to the modeling choice of microscopic versus macroscopic flow
framework in traffic modeling [8].

Fig. 1: Network instance (N, r). N links from O to D with demand r.

We then introduce a cost function, or latency function l
n

,
on each link n. A link’s cost can be thought of as the latency
experienced by a job assigned to a particular machine n in
the case of job scheduling [13], or the travel time of a vehicle
using a particular road n in the case of traffic assignment.
In a routing game, every non-atomic agent, represented by
an infinitesimal flow, chooses a route in order to minimize
her/his individual latency. [11], [14].

B. Modeling congestion with Latency Functions
To model the effects of queueing on a given link n,

the latency l
n

on the link is typically assumed to be a
non-decreasing function of the amount of flow x

n

on link
n [2], [3], [14]. While this class of latency accurately
models congestion on a broad range of networks (such as
the internet, and more generally communication networks),
it fails to correctly model congestion for a large class of
networks. For example, consider a link (or road) n in a traffic
network. A given flow x

n

may correspond to two different
scenarios: few vehicles on the road are moving quickly (the
road is in free-flow), in which case the latency on the road
is low, or a large number of vehicles on the road are moving
slowly (the road is congested), in which case the latency on
the road is high. This phenomenon is not captured if the
latency is only a function of flow, as such functions do not
allow capacity to decrease as latencies increase (Figure 2c
shows how mapping flow to latency is not unique). One way
to address this limitation is to have two latency functions: one
describes the latency on a link in free-flow, while the other
describes the latency on a link in congestion. Equivalently,
one may introduce a second binary argument m

n

2 {0, 1}
to the latency function, designed to specify whether the link
is in free-flow or in congestion.

We next show that such latency functions can be derived
from macroscopic models of flow on horizontal queuing
networks.

C. Deriving Latency Functions for Horizontal Queuing Net-
works

The relationship between the speed of flow on a network
and the density of flow (or amount of flow in the static sense)
is usually expressed by a function called the flux function
in the physical sciences and conservation law theory and
fundamental diagram in traffic flow theory [4], [12]. Figure
2a depicts a triangular flux function, while similarly shaped
diagrams have been developed for certain applications.

While such flow models have been popular for many
decades in specific domains (such as traffic and fluid me-
chanics), less attention has been given to these models in
the literature studying routing games, which focuses on
modeling latency as a non-decreasing function of flow, and
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Fig. 2: Examples of flux functions and corresponding latency functions
that satisfy the assumptions in Section II-C. The dotted line describes a flux
function which reacts less severely to increasing density than the dashed and
dot-dashed lines.

assumes flow and density to have a one-to-one relation. In
order to characterize Nash equilibria on horizontal queueing
networks, we develop a novel approach based on the unique
structure of the latency functions.

Consider a link n with length L
n

, and assume the flow
x
n

on the link is given by a function:
x⇢

n

: D
n

! R
+

⇢
n

7! x
n

= x⇢

n

(⇢
n

)

The function x⇢

n

maps density ⇢
n

to flow, is defined on
the domain D

n

⇢ R
+

, and corresponds to the fundamental
diagram of traffic3. The latency is given by a function:

l⇢
n

: D
n

! R
+

⇢
n

7! l⇢
n

(⇢
n

)

We observe that latency is related to flow and density
through the relation:

l⇢
n

(⇢
n

) =

L
n

⇢
n

x⇢

n

(⇢
n

)

, (1)

We make three assumptions on the flow and latency func-
tions x⇢

n

and l⇢
n

for horizontal queues, which are illustrated
in Figure 2a.

1) There exists a critical density ⇢crit
n

> 0, such that
the latency is constant and minimal on the interval
⇥

0, ⇢crit
n

⇤

. This is equivalent to the flow function x⇢

n

being linear on that interval.
2) x⇢

n

is maximal at ⇢crit
n

. The value of the flow at critical
density is denoted xmax

n

= x⇢

n

(⇢crit
n

) and referred to as
maximum flow or capacity of the link.

3) The latency function l⇢
n

, is continuous, non-decreasing.

We define the free-flow region as ⇢
n

2
⇥

0, ⇢crit
n

⇤

and con-
gested region as ⇢

n

> ⇢crit
n

. These assumptions define a
class of supported fundamental diagrams. Assumption 2 just
states that 8⇢

n

� 0, x⇢

n

(⇢
n

) 2 [0, xmax

n

]. From Equation
(1), Assumption 3 can be expressed equivalently in terms
of the flow function x⇢

n

as dx

⇢
n(⇢n)

d⇢n
 x

⇢
n(⇢n)

⇢n
. This gives

reasonable restrictions on the shape of fundamental diagrams
in the congestion region, and flexible enough to allow non-
concavity, and even increasing functions x⇢

n

under certain
conditions. Examples of allowable fundamental diagrams

3Note, this allows for fundamental diagrams with unbounded density
support, for example as in [12]: x (⇢) = ⇢e�⇢

are given in Figure 2a, and corresponding examples of
latency functions are given in Figure 2b. Note that from
these assumptions, we can write the latency function for the
horizontal queueing model as:

l⇢
n

(⇢
n

) =

(

Ln⇢
crit
n

x

max

n
⇢
n

2
⇥

0, ⇢crit
n

⇤

Ln⇢n

xn(⇢n)
otherwise

Example 1: Triangular fundamental diagrams
One particular class of fundamental diagrams x⇢ that

satisfy the above assumptions are triangular fundamental
diagrams [4], which are linear with positive slope vf in
the free-flow region, affine with negative slope vc in the
congestion region, and have maximum flow xmax

= ⇢critvf .
Assumptions 1 and 2 are satisfied by definition, and Assump-
tion 3 is satisfied since dx(⇢)

d⇢

= vf =

x(⇢)

⇢

8⇢ 2 [0, ⇢crit
]

and dx(⇢)

d⇢

= vc  0  x(⇢)

⇢

8⇢ � ⇢crit. The dotted line
in Figure 2a shows a triangular fundamental diagram. The
latency function is then given by:

l⇢4 (⇢) =

(

L

v

f 0  ⇢  x

max

v

f

L⇢

v

c
(⇢�⇢

max

)

x

max

v

f < ⇢  ⇢max

where ⇢max

= xmax

�

1

v

f � 1

v

c

�

.

D. A new class of Latency functions: Horizontal Queuing
Latency

While expressing latency as a function of density is
intuitive and succinct for horizontal queues, expressing it
as a function of flow proves to be more convenient in the
study of congestion games. This is largely due to the fact that
total flow must be conserved in traffic assignment problems,
and not density. For this reason, we introduce an equivalent
formulation of latency using flow and a binary argument that
describes congestion state. Let the congestion state m

n

of
link n be defined as:

m
n

:=

(

0 if n is in free-flow
1 if n is congested

We can now define a general class of latency functions l
n

as
a function of both flow and congestion state:

l
n

: [0, xmax

n

]⇥ {0} [ (0, xmax

n

)⇥ {1} ! R
+

(x
n

,m
n

) 7! l
n

(x
n

,m
n

) ,

Note that the latency in congestion l
n

(·, 1) is defined on
the open interval (0, xmax

n

). In particular, if x
n

= 0 then
m

n

= 0 (an empty link is in free-flow) and if x
n

= xmax

n

then m
n

= 0 (if a link is at maximum capacity, it is
considered, by convention, to be in free-flow. It is in fact on
the boundary of the free-flow and congestion regions, and
we choose this convention to simplify the discussion). We
also assume that l

n

satisfies the following properties, which
are equivalent to the assumptions in Section II-C:

• The latency in free-flow is constant. Equivalently,
8x

n

2 [0, xmax

n

], l
n

(x
n

, 0) = a
n

, where a
n

is the
constant free-flow latency.

• lim

xn!x

max

n
l
n

(x
n

, 1) = l
n

(xmax

n

, 0) = a
n

• x 7! l
n

(x, 1) is decreasing on (0, xmax

n

).



Some examples of latency functions in this class are illus-
trated in Figure 2c. Again, the latency function corresponding
to a triangular fundamental diagram can be readily expressed
in this form:

l4 (x, 0) =

L

vf

l4 (x, 1) = L

✓

⇢max

x
+

1

vc

◆

E. Total System Cost
The cost to an agent is defined as the latency experienced

by the agent, or the latency of the link chosen by the agent.
Therefore, the total cost experienced on a particular link
C

n

(x
n

,m
n

) = l
n

(x
n

,m
n

)x
n

= L
n

⇢
n

. Then, the total
system cost is the sum of the costs of the individual links
C (x,m) =

P

N

n=1

C
n

(x
n

,m
n

), where x = (x
1

, . . . , x
N

) is
the vector of flows, and m = (m

1

, . . . ,m
N

) is the vector of
congestion states for the entire network.

III. NASH EQUILIBRIA

In this section, we characterize pure non-atomic Nash
equilibria of the network (also called Wardrop equilibria in
the transportation literature), which we simply refer to as
Nash equilibria. We show that our class of latency functions
induce multiple Nash equilibria with different costs, and that
the set of Nash equilibria can be computed in polynomial
time (with respect to the number of parallel links). Then
we characterize the best Nash equilibrium and focus our
attention on studying the inefficiency of the best Nash
equilibrium in Section V.

A. Characterization of Nash Equilibria
We first recall the fundamental notion of Nash equilibrium

for the network instance (N, r) [14], [11].
Definition 1: Nash Equilibrium
An assignment (x,m) 2 RN

+

⇥ {0, 1}N for the network
instance (N, r) is a Nash equilibrium, if 8n

x
n

> 0 ) 8k  N, l
n

(x
n

,m
n

)  l
k

(x
k

,m
k

)

In particular, every non-atomic agent cannot improve her/his
latency by switching to another link. As a consequence, all
links that are in the support of x have the same latency l

0

,
and links that are not in the support have latency greater than
or equal to l

0

. We will denote by Supp (x) the support of x,
i.e. the set {n 2 {1, . . . , N} |x

n

> 0}.
Note that to fully describe the equilibrium, one needs to

specify the congestion state vector m in addition to the flow
assignment x, since the latency on a link depends on whether
the link is congested or not. The following Lemma gives an
equivalent characterization of Nash equilibria.

Lemma 1: Characterization of a Nash Equilibrium
A feasible assignment (x,m) for a network instance

(N, r) is a Nash equilibrium if and only if 9 l
0

> 0 such
that

x
n

> 0 ) l
n

(x
n

,m
n

) = l
0

x
n

= 0 ) l
n

(0, 0) � l
0

The total latency incurred by the network is C(x,m) = rl
0

.

Note that links that have zero flow are necessarily in free-
flow x

n

= 0 ) m
n

= 0.

B. Horizontal queueing networks have multiple Nash equi-
libria

Let NE (N, r) denote the set of Nash Equilibria for
network instance (N, r). For our class of latency functions,
the essential uniqueness property of Nash equilibrium [14]
does not hold.4 To see this, consider for example a network
instance (N=2, r=1) where xmax

1

= xmax

2

= 1, the free-
flow latencies are a

1

= 1 and a
2

= 2, and the congested
latency functions are given respectively by l

1

(x
1

, 1) =

1

x

1

and l
2

(x
2

, 1) =

2

x

2

. Then it is easy to see that (x,m) =

((1, 0), (0, 0)), (x0,m0
) = ((

1

2

, 1

2

), (1, 0)), and (x00,m00
) =

((

1

3

, 2

3

), (1, 1)) are all Nash equilibria for this instance, and
they have different costs: C(x,m) = 1, C(x0,m0

) = 2 and
C(x00,m00

) = 3. This simple example shows that there are at
least two types of Nash equilibria: equilibria for which every
link in the support is congested (this is the case for (x00,m00

)

in the previous example), and equilibria that have one link
in free-flow in their support (this is the case for both (x,m)

and (x0,m0
)). In this section, we show that these are in fact

the only possible types of equilibria, and we prove that there
are at most 2N such equilibria, assuming free-flow latencies
are distinct. To simplify the discussion, we assume without
loss of generality, that the links are ordered by increasing
free-flow latencies, and that free-flow latencies are different
to avoid degenerate cases where the set of Nash equilibria is
infinite (a

1

< a
2

< . . . < a
N

).
We start by deriving properties that the congestion state

vector m needs to satisfy for a Nash equilibrium (x,m).
Lemma 2: Congestion of lower links
Let (x,m) 2 NE (N, r).
Then j 2 Supp (x) ) m

i

= 1 8i 2 {1, . . . , j � 1}
Proof: Let i 2 {1, . . . , j � 1}. Then m

i

= 0 )
l
i

(x
i,

m
i

) = a
i

< a
j

 l
j

(x
j

,m
j

), which violates the
characterization of Nash equilibrium in Lemma 1. Therefore,
m

i

= 1 8i 2 {1, . . . , j � 1}.
Corollary 1: Congestion states under equilibrium
Let (x,m) 2 NE (N, r). Assume that 9j 2 Supp (x)

such that m
j

= 0. Then m = (1, . . . ,
j�1

1

,
j

0

, . . . , 0) and
Supp (x) = {1, . . . , j}.

Proof: We have from Lemma 2 that 8i 2
{1, . . . , j � 1}, m

i

= 0. And we have 8i 2 {j + 1, . . . , N},
l
i

(x
i

,m
i

) � a
i

by definition of the latency function, and
a
i

> a
j

since i > j. Therefore the latency on link

4Note that essential uniqueness of Nash Equilibria holds for the class of
non decreasing latency functions, i.e. all Nash Equilibria have the same cost.
To show this result, assume that the latency functions xn 7! ln(xn) are
non-decreasing and only depend on the flow xn. Let x and x0 be two Nash
equilibria for (N, r). Let l

0

, respectively l0
0

denote the common latency of
all links in the support of x, respectively x0. The cost of the Nash equilibria
are respectively rl

0

and rl0
0

. Assume x 6= x0. Then 9n
1

, n
2

such that
xn

1

> x0
n
1

� 0 and x0
n
2

> xn
2

� 0. Since x is at Nash equilibrium and
n
1

2 Supp (x), ln
1

(xn
1

)  ln
2

(xn
2

). And since ln
2

is non-decreasing
ln

2

(xn
2

)  ln
2

(x0
n
2

). Thus l
0

= ln
1

(xn
1

)  ln
2

(xn
2

)  ln
2

(x0
n
2

) =
l0
0

. Exchanging the roles of x and x0 we have l0
0

 l
0

. Therefore l
0

= l0
0

and both equilibria have the same cost.



i 2 {j + 1, . . . , N} is strictly greater than the latency on
link j 2 Supp (x), therefore i /2 Supp (x) (follows from
the characterization of Nash equilibrium in Lemma 1) and
m

i

= 0.
The corollary states that if some link j in the support of
a Nash equilibrium is in free-flow, this completely deter-
mines the congestion state vector of the equilibrium: links
{1, . . . , j � 1} are in the support and are congested, and links
{j + 1, . . . , N} are not in the support. We will call such Nash
equilibria (where a single link in the support is in free-flow)
single link free-flow equilibria. In general a Nash equilibrium
does not necessarily have a link in free-flow: this defines a
second type of equilibria where all links in the support are
congested, i.e. m

max Supp(x) = 1. We will call such equilibria
congested equilibria.

The following Lemma shows that given a congestion
state vector m, there are at most two corresponding Nash
equilibria (x,m), one single link free-flow equilibrium, and
one congested equilibrium.

Lemma 3: Enumerating Nash Equilibria
For a given congestion state m, there are at most two

assignments x such that (x,m) is a Nash equilibrium.
Proof: Let m 2 {0, 1}N be a given congestion state

vector and assume x, x0 2 RN

+

are such that (x,m) and
(x0,m) are two different Nash equilibria. Then 9i, j, 1 
i < j  N such that 0  x

i

< x0
i

and 0  x0
j

< x
j

(we
assume without loss of generality that i < j: if this is not
the case, exchange x and x0).

We start by noting that since j 2 Supp (x) and i < j, then
i 2 Supp (x). This follows from the fact that l

i

(0,m
i

) =

a
i

< a
j

 l
j

(x
j

,m
j

), thus if j 2 Supp (x), x
i

cannot be
zero since every link in the support of a Nash equilibrium
has latency  the latency on any other link.

Now since i, j 2 Supp (x), then we have l
i

(x
i

,m
i

) =

l
j

(x
j

,m
j

). And since j 2 Supp (x) and i < j, then by
Lemma 2, we have m

i

= 1 (link i is congested). Therefore
l
i

(x
i

,m
i

) > l
i

(x0
i

,m
i

) since l
i

(., 1) is decreasing. Finally
we have l

j

(x
j

,m
j

)  l
j

(x0
j

,m
j

) since l
j

(., 0) is constant
and l

j

(., 1) is decreasing. Combining the above, we have

l
i

(x0
i

,m
i

) < l
i

(x
i

,m
i

) = l
j

(x
j

,m
j

)  l
j

(x0
j

,m
j

) (2)

Now we partition the set of Nash Equilibria in two sets
NE (N, r) = NEf(N, r) t NEc(N, r): equilibria that have a
completely congested support, denoted by NEc(N, r), and
equilibria that have one link in free-flow in their support,
denoted by NEf(N, r). Now we show that for a given
congestion state vector m, each set contains at most one
element.

Suppose (x,m), (x0,m) 2 NE
f

(N, r), where x, x0 are
as defined above. Then since j 2 Supp (x), we have by
Lemma 2, 8k < j m

k

= 1. Since the last link in the
support of x0 is, by assumption, in free-flow, we have
max Supp (x0

) � j. Therefore j 2 Supp (x0
). But from

(2) we have l
i

(x0
i

,m
i

) < l
j

(x0
j

,m
j

) which contradicts the
definition of a Nash Equilibrium (a link in the support of
a Nash Equilibrium has latency less than or equal to any

other link). Thus there is at most one assignment x such that
(x,m) 2 NE

f

(N, r).
Suppose (x,m), (x0,m) 2 NE

c

(N, r), where x, x0 are as
defined above. Then since j 2 Supp (x) and every link in
the support is congested (by definition of NE

c

(N, r)), then
m

j

= 1. Therefore j is also congested under assignment x0,
thus j 2 Supp (x0

). Similarly to the first case, this leads to
a contradiction since l

i

(x0
i

,m
i

) < l
j

(x0
j

,m
j

), which proves
that there is at most one assignment x such that (x,m) 2
NE

c

(N, r).
This shows that there are at most 2N Nash equilibria
for the instance (N, r): N single link free-flow equilibria,
corresponding to congestion states m = (0, . . . , 0), m =

(1, 0, . . . , 0), . . . , m = (1, . . . , 1, 0), and N congested equi-
libria, corresponding to congestion states m = (1, 0, . . . , 0),
. . . , m = (1, . . . , 1). Next, we characterize single link free-
flow equilibria.

C. Single link free-flow Equilibria

Consider a Nash equilibrium (x,m) and let k =

max [Supp (x)]. Assume m
k

= 0 (i.e. (x,m) is a free-
flow Nash equilibrium). We have from Corollary 1 that
links {1, . . . , k � 1} are congested and link k is in free-flow.
Therefore we must have 8n 2 {1, . . . , k � 1}, l

n

(x
n

, 1) =

l
k

(x
k

, 0) = a
k

. This uniquely determines the flow on
congested links n 2 {1, . . . , k � 1}. We define this flow to
be x̂

n

(k). More precisely,
Definition 2: Congestion flow
For 1  n < k  N , the congestion flow x̂

n

(k) is defined
as the unique flow in (0, xmax

n

) that satisfies

l
n

(x̂
n

(k) , 1) = a
k

(3)
Proposition 1: Congestion Flows are decreasing

x̂
n

(k) = l
n

(·, 1)�1

(a
k

) (4)

is a decreasing function of k since a
k

is increasing in k and
l
n

(·, 1)�1 is decreasing.
We can now characterize single link free-flow equilibria. All
single link free-flow equilibria are of the form

�

x̄k,r, m̄k

�

where
m̄k

:= (

1

1

, . . . ,
k�1

1

,
k

0

, . . . ,
N

0

) (5)

x̄k,r

:= (

1

x̂
1

(k), . . . ,
k�1

x̂
k�1

(k), r �
k�1

X

n=1

x̂
n

(k) , 0, . . . ,
N

0

) (6)

Illustrations of Equations (3), (5) and (6) are shown in
Figure 3.

Proposition 2: Single link free-flow Nash Equilibria
If x̄k,r is a feasible assignment, i.e. r �

P

k�1

n=1

x̂
n

(k) 2
[0, xmax

k

], then
�

x̄k,r, m̄k

�

is a Nash Equilibrium for the
instance (N, r).

Proof: From (5) and (6), we have that 8i < k,
x̄k,r

i

2 [0, xmax

i

] and l
i

(x̄k,r

i

, m̄k

i

) = a
k

. And since m̄k

k

= 0

by definition of m̄
k

, we also have l
k

(x̄k,r

k

, m̄k

k

) = a
k

. All
links n > k are not in Supp

�

x̄k,r

�

, and have a latency
greater than a

k

. Therefore, we have that 8n 2 Supp
�

x̄k,r

�

,
l
n

(x̄k,r

n

, m̄k

n

) = a
k

and 8n /2 Supp
�

x̄k,r

�

, l
n

(x̄k,r

n

, m̄k

n

) >
a
k

, which satisfies the definition of a Nash equilibrium.



(a) Examples of congestion flows
x̂n (k).

(b) Example of a single link free-
flow assignment (x̄3,r , m̄3).

Fig. 3: Graphical illustration of single link free-flow Nash equilibria.

D. Existence of a single-link free-flow Nash Equilibrium

From property 2, we have a simple characterization of
single link free-flow equilibria. Next, we show that if the set
of Nash equilibria is non-empty, then it contains a single link
free-flow equilibrium.

Lemma 4: Existence of a single link free-flow Nash equi-
librium

Consider instance (N, r). If the set of Nash equilibria is
non empty, NE (N, r) 6= ;, then there exists a single link
free-flow Nash equilibrium

�

x̄j,r , m̄j

�

2 NE (N, r) for some
j  N .

Proof: We first observe that for a network of N
links, the maximum demand r such that NE (N, r) 6= ;
is max

k2{1,...,N}

n

xmax

k

+

P

k�1

n=1

x̂
n

(k)
o

. We denote this
quantity with rNE

(N). Therefore, from Lemma 2, it suffices
to show the following property:

P
N

: 8r 2
⇥

0, rNE
(N)

⇤

, there exists a single link free-flow
Nash equilibrium for the instance (N, r).

We show P
N

by induction on N , the size of the network.
For N = 1, it is clear that if 0  r  xmax

1

, there is a
single-link free-flow equilibrium (x,m) = (r, 0).

Now let N � 1, assume P
N

is true and let us show P
N+1

.
Let 0  r  rNE

(N + 1) and consider a network instance
(N + 1, r).

Case 1: If r  rNE
(N), then by the induction hypothesis

there exists a single link free-flow Nash equilibrium (x,m)

for the instance (N, r). Then assignment (x0,m0
) defined as

x0
= (x

1

, . . . , x
N

, 0) and m0
= (m

1

, . . . ,m
N

, 0) is clearly a
single-link free-flow Nash equilibrium for the instance (N+

1, r).
Case 2: If rNE

(N) < r  rNE
(N + 1) then we can show

that
�

x̄N+1,r , m̄N+1

�

2 NE (N + 1, r). From Proposition 2,
we only need to show that

0  r �
N

X

n=1

x̂
n

(N + 1)  xmax

N+1

. (7)

First, we note that since rNE
(N) < rNE

(N + 1), then
rNE

(N + 1) = xmax

N+1

+

P

N

n=1

x̂
n

(N + 1), thus from r <

rNE
(N + 1), we have r  xmax

N+1

+

P

N

n=1

x̂
n

(N + 1)

which proves the second inequality of (7). To show the first

inequality, we have

r � x

max

N +
N�1X

n=1

x̂n (N) since r

NE (N)<r

� x

max

N +
N�1X

n=1

x̂n (N + 1) since x̂n (N) � x̂n (N + 1)

� x̂N (N + 1) +
N�1X

n=1

x̂n (N + 1) since x

max

N � x̂N (N + 1)

which achieves the induction.

Corollary 2: Cost of single link free-flow Equilibria
If there exists a congested equilibrium (x,m) 2

NE (N, r), then there exists a single-link free-flow equilib-
rium (x0,m0

) with lower cost.
Proof: Let (x,m) 2 NE (N, r) be a congested equi-

librium, i.e. m
k

= 1 where k = max Supp (x). Then we
have r  xmax

k

+

P

k�1

n=1

x̂
n

(k) and by the property P
k

,
there exists a single-link free-flow equilibrium (x̃, m̃) 2
NE (k, r), and the cost of this equilibrium is C(x̃, m̃)  a

k

r.
But this also provides a single-link free-flow equilibrium
(x0,m0

) for the original instance (N, r) defined by x0
=

(x̃
1

, . . . , x̃
k

, 0, . . . , 0) and m0
= (m̃

1

, . . . , m̃
k

, 0, . . . , 0), and
C(x0,m0

) = C(x̃, m̃)  a
k

r. To conclude, we simply note
that the cost of the congested equilibrium is C(x,m) =

l
k

(x
k

, 1)r > a
k

r, thus C(x,m) > C(x0,m0
).

IV. BEST NASH EQUILIBRIA

A. Determining minimum cost Nash equilibria
In order to study the inefficiency of Nash equilibria, we

focus our attention on best Nash equilibria and price of
stability as a measure of their inefficiency (see for example
[1]). A best Nash equilibrium (BNE) is defined to be a Nash
equilibrium of least total latency.

Definition 3: Best Nash Equilibrium
BNE (N, r) = argmin

(x,m)2NE(N,r)

C (x,m)

We now show some interesting properties of the best Nash
equilibrium:

1) BNE (N, r) is unique.
2) BNE (N, r) is a single-link free-flow equilibrium.
3) BNE (N, r) has the smallest support of all Nash equi-

libria for demand r.
These properties are summarized in the following theorem.

Theorem 1: Characterization of Best Nash Equilibria
For a parallel network instance (N, r), the unique best

Nash equilibrium is the single-link free-flow equilibrium that
has smallest support:

BNE (N, r) = argmin

(x,m)2NEf(N,r)

{max [Supp (x)]}

Proof: From Corollary 2 we have that if (x,m) 2
NE (N, r) is a congested equilibrium, then these exists a
single-link free-flow equilibrium with lower cost. Therefore
the Best Nash Equilibrium is a single-link free-flow equi-
librium. To show that the BNE has smallest support, we
simply note that if (x,m) 2 NEf(N, r) is a single-link free-
flow equilibrium and k = max Supp (x), then its cost is



C(x,m) = a
k

r. Note that uniqueness is immediate since two
single-link free-flow equilibria (x,m) and (x0,m0

) that have
the same support, hence the same congestion state m = m0,
coincide by Lemma 3.
Theorem 1 therefore provides a simple characterization of
the best Nash equilibrium for any instance (N, r). This
characterization results in a simple algorithm to compute
the best Nash equilibrium for any network and any feasible
demand.

B. Computational complexity of finding Best Nash Equilibria
In this section, we present a constructive algorithm for

finding the best Nash equilibrium of a network instance
(N, r) and then show the running time to be in O

�

N2

�

.
Algorithm (1) relies on the routine freeFlowConfig,

which outputs a candidate single-link free-flow assignment
for the instance (N, r), such that link i is the last link
in the support (Equation (6)). Starting with link 1 in free-
flow, bestNE checks if the output of freeFlowConfig
is a feasible assignment. If this is the case, the candidate
assignment is the Best Nash Equilibrium, and bestNE

terminates. If not, the free-flow link index is incremented
by one, and the process is repeated until either a feasible
assignment is found, or the number of links exceeds N , in
which case no Nash equilibrium exists.

Algorithm 1 Best Nash Equilibrium

procedure bestNE(N, r)
Inputs: Size of the network N, demand r

Outputs: Assignment (x,m) at

Best-Nash-Equilibrium

for i 2 {1, . . . , N}:
let (x,m) = freeFlowConfig(N, r, i)

if xi 2 [0, x

max

i ]:

return (x,m)

return No-Solution

procedure freeFlowConfig(N, r, i)
Inputs: Size of the network N,

demand r, free-flow link index i

Outputs: assignment (x,m) = (x̄

r,i
, m̄

r,i
)

as defined in Eq’s (5) and (6)

for i 2 {1, . . . , N}:
if i < j:

xi = x̂i(j), mi = 1 x̂i(j) in Eq. (4)
elseif i == j:

xi = r �
Pj

k=1

xk, mi = 0

else:

xi = 0, mi = 0

return (x,m)

We first note from Algorithm 1 that from the definition
of x̂

i

(j), we can precompute x̂
i

(j) 81  i < j  N) in
O
�

N2

�

. The subroutine freeFlowConfig runs in O (N)

time. Finally, for each loop of the bestNE outer routine
(with N iterations), the running time is a constant plus the
running time of freeFlowConfig. Therefore, the overall
running time of the algorithm is O(N2

)+NO(N) = O(N2

).

V. INEFFICIENCY OF BEST NASH EQUILIBRIA

To study the inefficiency of Nash equilibria, in particular
of the best Nash equilibrium, we use price of stability as a

measure of inefficiency [1]. Price of stability is defined as
the ratio between the cost of the best Nash Equilibrium and
the social optimal cost. First we give an overview of social
optimum for our model. Then we consider a simple two
link parallel network and derive the price of stability for a
triangular fundamental diagram. We show how this example
illustrates the dependency of the price of stability on the flow
demand and the free-flow latencies.

A. Social Optima

Consider an instance (N, r) where the flow demand r
does not exceed the maximum capacity of the network
r 

P

n

xmax

n

. Since the total cost function is C(x,m) =

P

N

n=1

x
n

l
n

(x
n

,m
n

), the social optimum of the network is
a solution to the optimization problem: min

x,m

P

xl
n

(x
n

,m
n

)

such that
P

n

x
n

= r. It is shown in [7] that a socially
optimal flow is necessarily in free flow on all links, which
leads to an equivalent linear program: min

x,m

P

n

x
n

a
n

such
that

P

n

x
n

= r. Then, since the links are ordered by
increasing free-flow latency a

1

< · · · < a
N

, the social
optimum is simply given by the assignment that saturates
most efficient links first. Formally, if k

0

= max{k|r >
P

k

n=1

xmax

n

} then the social optimal assignment x⇤ is:

x⇤
= (xmax

1

, . . . , xmax

k

0

, r �
k

0

X

n=1

xmax

n

, 0, . . . , 0) (8)

B. Price of Stability on a Two-Link Network

To characterize the loss of efficiency of Nash equilibria
several metrics have been used including price of anarchy
[14] and price of stability [1]. The price of anarchy is defined
as the ratio between the cost of the worst Nash equilibrium
and the the social optimum cost, while the price of stability
is defined as the ratio between the best Nash equilibrium
and the social optimal cost. For the case of non-decreasing
latency functions, the price of anarchy and the price of
stability coincide since all Nash equilibria have the same cost
by the essential uniqueness property [14]. Since we focus our
analysis on the best Nash equilibrium, we use as a metric
the price of stability.

Consider a network instance (2, r) such that a
1

<
a
2

and xmax

2

+ x̂
1

(2) > xmax

1

. Let BNE (2, r) =

(xBNE(r),mBNE(r)) be the best Nash equilibrium and
(xSO(r), 0) be the social optimum, as defined by (8).
The price of stability is then defined as POS (N, r) =

C(xBNE(r),mBNE(r))

C(xSO,0)
. From social optimum (8) and the char-

acterization of the best Nash equilibrium in Theorem 1, we
only need to consider the following two cases:

a) Case 1: 0  r  xmax

1

: Using (8), all the demand
will be on link 1 in free-flow. Similarly, from Theorem 1
we have that since link 1 can accommodate r in free-flow
and the support cannot be smaller than a single link, then
BNE (2, r) has all flow demand on link 1 in free-flow, and
is equivalent to the social optimum. In this case, the price of
stability is equal to 1, i.e there is no decrease in efficiency
due to selfish routing.



(a) Social optimum (b) Nash equilibrium (c) POS as a function of
demand.

Fig. 4: Visualization of POS on two-link network. Differences in flow
assignments between social optimum and Nash equilibrium are shown in 4a
and 4b. The area of the shaded regions in 4a,4b are the total costs attributed
to each link. In 4c, the flat region corresponds to r  xmax

1

(Case 1) and
the decreasing region to r > xmax

1

(Case 2).

b) Case 2: xmax

1

< r  xmax

2

+ x̂
1

(2): We know that
all flow demand cannot be accommodated by link 1. From
(8), the social optimum assignment is given by xSO(r) =

(xmax

1

, r�xmax

1

). From Theorem 1 we have that BNE (2, r)
has a single link in free-flow. Since the total demand exceeds
the capacity of link 1, then under a best Nash equilibrium,
link 2 is in free-flow, and link 1 is congested. Therefore
mNE(r) = (1, 0). From Algorithm 1, the corresponding
flow xNE(r) will be (x̂

1

(2) , r� x̂
1

(2)). The comparison of
the social optimum and Nash equilibrium assignments are
depicted in Figure 4.

Computing the price of stability when r > xmax

1

reveals where the inefficiencies lie in the Nash equi-
librium. It is shown in [7] that POS (2, r > xmax

1

) =

⇣

1� x

max

1

r

⇣

1� a

1

a

2

⌘⌘�1

. In this simple two-link parallel
network, the price of stability is maximal at r = xmax

1

and
equal to a

2

a

1

(Figure 4c). This shows in particular that for the
general class of horizontal queuing congestion latencies, the
price of stability is unbounded, since for any demand r and
any positive constant A, we can design an instance (2, r)
such that the price of stability is a

2

a

1

> A.

Also note that for a fixed flow demand r > xmax

1

, the price
of stability is an increasing function of a

2

a

1

. And as a
2

! a
1

,
the price of stability goes to 1. Intuitively, the inefficiency
of Nash equilibria can be directly attributed to the difference
in free-flow latency between the links.

Additionally, as the demand r � xmax

1

increases, the price
of stability decreases. This occurs because the difference in
total latency between social optimum and Nash equilibrium
is constant for r � xmax

1

.

This also shows that selfish routing is most costly when a
free-flow link is near maximum capacity (note the disconti-
nuity in total latency for Nash equilibrium that occurs when
demand exceeds the capacity of the first link r > xmax

1

). If
a controller were to anticipate a scenario where demand was
slightly above this capacity, they could dramatically reduce
the inefficiency of the Nash equilibrium by rerouting a small
fraction of the flow and keeping the link in free-flow.

VI. CONCLUSION

We introduced a new class of latency functions that models
congestion in horizontal queuing networks, and studied the
resulting Nash equilibria for non-atomic congestion games
on parallel networks. We showed the essential uniqueness
property does not hold for this new class, and that there
may be up to 2N equilibria for a network instance (N, r).
Then we focused our attention on the best Nash equilibrium
BNE (N, r), which we proved is the single link free-flow
equilibrium with smallest support, and then presented a
constructive, quadratic time algorithm for finding this equi-
librium. Finally, we derived price of stability results for an
example network, then showed that if a link is anticipated to
be near capacity, congestion can be completely averted by
diverting only a small fraction of the demand.
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