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(2.1) Let B be the Borel subsets of R. For B ∈ B define

µ(B) =

{
1 if (0, ε) ⊂ B for some ε > 0

0 if not

• Show that µ is not finitely additive on B

• Show hat µ is finitely additive but not countably additive on the field B0 of finite disjoint unions of
intervals (a, b].

answer

• for all n ≥ 1, let In =
(

1
n+1 ,

1
n

]
. Now consider the sets B0 = ∪∞k=1I2k and B1 = ∪∞k=0I2k+1. B0 and

B1 are countable unions of intervals, and are thus Borel sets. Furthermore, B0 and B1 are disjoint,
µ(B0) = µ(B1) = 0, but B0 t B1 = (0, 1], therefore µ(B0 ∪ B1) = 1. This shows that µ is not finitely
additive on B.

• consider a set B ∈ B0 of the form B = ∪ni=1(ai, bi] where the union is disjoint. Then µ(B) = 1 if and
only if one of the intervals (ai, bi] contains (0, ε) for some positive ε, i.e. if and only if there exists i
such that 0 ∈ [ai, bi). Now if we consider two disjoint such sets B = ∪ni=1(ai, bi] and B′ = ∪nj=1(a′i, b

′
i],

then

– either µ(B) = µ(B′) = 0, in which case µ(B tB′ = 0)

– or µ(B) = 1 in which case µ(B′) = 0 since they are disjoint, in which case µ(B tB′) = 1

– or µ(B′) = 1 in which case µ(B) = 0 since they are disjoint, in which case µ(B tB′) = 1

This proves that µ is finitely additive on B0. However, it is not σ-additive. Indeed, consider the sets
In =

(
1

n+1 ,
1
n

]
. Each In belongs to B0, and has measure 0. However, the disjoint countable union

t∞n=1In = (0, 1] has measure 1.

(2.2) Show that, in the definition of “a probability measure µ on a measurable space (S,S)”, we may
replace “countably additive” by “finitely additive, and satisfies

if An ↓ ∅ then µ(An) ↓ 0

proof First note that the two following definitions of σ-additivity are equivalent for probability measures

• An ↑ A⇒ µ(An) ↑ µ(A)

• An ↓ A⇒ µ(An) ↓ µ(A)

(one follows from the other by taking complements). Now we show the claim
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• Suppose µ is countably additive. Then it is also finitely additive, and if An ↓ ∅, then by σ-additivity,
we have µ(An) ↓ µ(∅) = 0

• Now suppose that µ is finitely additive and for any nested sequence An ↓ ∅, µ(An) ↓ 0. Now consider any
nested sequence Bn ↓ B, where B is the intersection B = ∩nBn. For all n, define An = Bn\B. Then we
have An is a nested sequence, and An ↓ ∅ (indeed, ∩nAn = ∩n(Bn∩Bc) = (∩nBn)∩Bc = B∩Bc = ∅).
Therefore µ(An) ↓ 0. But since B ⊂ Bn, we have Bn = An t B where the union is disjoint. Thus by
finite additivity, µ(Bn) = µ(An) + µ(B). Finally, since µ(An) ↓ 0, we have µ(Bn) ↓ µ(B).

(2.3) Give an example of a measurable space (S,S), a collection A and probability measures µ and ν such
that

• µ(A) = ν(A) for all A ∈ A

• S = σ(A)

• µ 6= ν

answer Consider S = {1, 2, 3, 4}, S = P (S), A = {{1, 2}, {2, 3}}. Note that we have σ(A) = S. Now
define µ and ν by

• µ({1}) = µ({2}) = µ({3}) = 1/3 and µ({4}) = 0 (this completely determines µ by finite additivity)

• ν({1}) = ν({3}) = 0, ν({2}) = 2/3 and ν({4}) = 1/3 (this completely determines ν by finite additiv-
ity).

Then we have µ({1, 2}) = ν({1, 2}) = 2/3 and µ({2, 3}) = ν({2, 3}) = 2/3, i.e. µ and ν agree on A, but µ
and ν are different.

(2.4) Let µ be a probability measure on (S,S), where S = σ(F) for a field F . Show that for each B ∈ S
and ε > 0, there exists A ∈ F such that µ(B∆A) < ε

proof Since F is a field, it is in particular closed under intersection, thus it forms a π-class of subsets of
S. Now let B be the collection of subsets

B = {B ⊂ S : ∀ε > 0,∃A ∈ F : µ(B∆A) < ε

it suffices to show that B is a λ-class, then by Dynkin’s Lemma, we have σ(F) ⊆ B, i.e. S ⊆ B, which proves
the claim.

Now let us show that B is a λ-class that contains F :

• we have S ∈ B: indeed, for all ε > 0, we have µ(S∆S) = µ(∅) = 0 < ε, and S ∈ F (since F is a field)

• let B1, B2 ∈ B. We seek to show that B = B1 \ B2 ∈ B. Fix ε > 0. There exist A1, A2 such that
µ(B1∆A1) < ε/2 and µ(B2∆A2) < ε/2. Now consider A = A1 \A2. We have

B∆A = (B ∩Ac) ∪ (Bc ∩A)

the first term is B∩Ac = (B1∩Bc2)∩(Ac1∪A2) = (B1∩Bc2∩Ac1)∪(B1∩Bc2∩A2) ⊆ (B1∩Ac1)∪(Bc2∩A2) ⊆
(B1∆A1)∪ (B2∆A2). Similarly, the second term is also a subset of (B1∆A1)∪ (B2∆A2) (by symmetry
in A, B). Therefore

B∆A ⊆ (B1∆A1) ∪ (B2∆A2)

and its measure is ≤ µ((B1∆A1) ∪ (B2∆A2)) ≤ µ(B1∆A1) + µ(B2∆A2) < ε.
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• Let Bn be a nested sequence of elements of B, such that Bn ↑ B. We seek to show that B ∈ B. Fix
ε > 0. Since Bn ↑ B, then µ(Bn) ↑ µ(B). Thus there exists N such that µ(BN ) > µ(B) − ε/2. Since
BN ∈ B, there exists A ∈ F such that µ(BN∆A) ≤ ε/2. Now consider B∆A. We have can write
B = BN ∪ Z where Z = B \BN and µ(Z) < ε/2. Then we have

B∆A = (Bc ∩A) ∪ (B ∩Ac)
= (BcN ∩ Zc ∩A) ∪ ((BN ∪ Z) ∩Ac)
⊆ (BcN ∩A) ∪ (BN ∩Ac) ∪ (Z ∩Ac)
⊆ (BN∆A) ∪ Z

therefore
µ(B∆A) ≤ µ(BN∆A) + µ(Z) < ε/2 + ε/2

and it follows that B ∈ B

Finally, B contains F since for all B ∈ F and for all ε > 0, µ(B∆B) = µ(∅) = 0 < ε. This concludes the
proof.

(2.5) Let g : [0, 1] → R be integrable w.r.t. Lebesgue measure. Let ε > 0. Show that there exists a
continuous function f : [0, 1]→ R such that

∫
|f(x)− g(x)|dx ≤ ε.

proof We first show that there exists a simple function s : [0, 1]→ R such that
∫
|s(x)− g(x)| ≤ ε/2. This

follows from the definition of the integral of an integrable function∫
gdµ =

∫
g+dµ−

∫
g−dµ

where
∫
g+dµ = sup

∫
s simple,s≤g+ sdµ (and similarly for g−, both functions being non-negative). Therefore

there exist simple functions s1 and s2 such that

s1 ≤ g+

s2 ≤ g−∫
s1 ≥

∫
g+dµ− ε/4∫

s2 ≥
∫
g−dµ− ε/4

define a simple function s = s1 − s2. Then we have∫
|s− g|dµ =

∫
|s1 − s2 − g+ + g−|

≤
∫
|s1 − g+|dµ+

∫
|s2 − g−|dµ by the triangle inequality

≤ ε/4 + ε/4 by definition of s1, s2

Now it suffices to show that any simple function s defined on [0, 1] can be approximated by a continuous
function on [0, 1], in the following sense: there exists f : [0, 1] → R continuous, such that

∫
|s − f | ≤ ε/2.

We can write s as the finite sum of scaled indicator functions

s =

n∑
i=1

ci1Ai
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where for all i, Ai ⊆ [0, 1] is a Lebesgue measurable set, and the Ai’s are disjoint. By regularity of the
Lebesgue measure, there exist a compact set Ki and an open set Oi such that

Ki ⊆ Ai ⊆ Oi

µ(Ai \Ki) ≤
ε

4|ci|n

µ(Oi \Ai) ≤
ε

4|ci|n

in particular, we have µ(Oi ∩Kc
i ) ≤ ε

2|ci|n . Now consider the closed sets Oci and Ki. By Urysohn’s Lemma,

there exists a continuous function fi : [0, 1]→ R such that fi is identically 0 on Oci , and identically 1 on Ki,
therefore

• |fi(x)− 1Ai
(x)| = 0 for all x ∈ Oci ∪Ki

• |fi(x)− 1Ai(x)| ≤ 1 for all x ∈ (Oci ∪Ki)
c = Oi ∩Kc

i

•
∫
|fi − 1Ai

|dµ ≤ µ(Oi ∩Kc
i ) ≤ ε

2|ci|n

Now consider the function f =
∑n
i=1 cifi. We have f is continuous as the finite sum of continuous functions,

and ∫
|s− f |dµ =

∫
|
n∑
i=1

ci(1Ai
− fi)|dµ

≤
n∑
i=1

|ci|
∫
|fi − 1Ai |

≤
n∑
i=1

|ci|
ε

2|ci|n

= ε/2

This concludes the proof.
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