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(2.1) Let B be the Borel subsets of R. For B € B define
1 if (0,¢) C B for some € > 0
ppy =0 10

0 if not

e Show that u is not finitely additive on B

e Show hat p is finitely additive but not countably additive on the field By of finite disjoint unions of
intervals (a, b].

answer

e foralln >1,let I,, = (%H’ %] Now consider the sets By = U2 Io, and By = UP2 jIoxy1. Bo and
B, are countable unions of intervals, and are thus Borel sets. Furthermore, By and B; are disjoint,
w(Bo) = w(B1) = 0, but By Ll By = (0, 1], therefore pu(By U By) = 1. This shows that p is not finitely

additive on B.

e consider a set B € By of the form B = U ,(a;, b;] where the union is disjoint. Then p(B) =1 if and
only if one of the intervals (a;,b;] contains (0,€) for some positive e, i.e. if and only if there exists ¢
such that 0 € [a;, b;). Now if we consider two disjoint such sets B = U], (a;, b;] and B’ = U7_, (a;, b],

then

— either p(B) = p(B’) =0, in which case u(B U B’ = 0)
— or u(B) =1 in which case p(B’) = 0 since they are disjoint, in which case p(BUB') =1

— or u(B’) =1 in which case u(B) = 0 since they are disjoint, in which case u(BU B’) =1

This proves that p is finitely additive on By. However, it is not o-additive. Indeed, consider the sets

I, = (n%_l, ﬂ Each I,, belongs to By, and has measure 0. However, the disjoint countable union

S I, = (0,1] has measure 1.

(2.2) Show that, in the definition of “a probability measure p on a measurable space (S,S)”, we may
replace “countably additive” by “finitely additive, and satisfies

if A, |0 then p(Ay) L0

proof First note that the two following definitions of o-additivity are equivalent for probability measures
o Ay T A= u(An) T u(A)
o A, L A= u(Ayn) | u(A)

(one follows from the other by taking complements). Now we show the claim



e Suppose j is countably additive. Then it is also finitely additive, and if A, | @, then by o-additivity,
we have u(A4,) } u(@) =0

e Now suppose that  is finitely additive and for any nested sequence A,, | 0, u(Ay) J 0. Now consider any
nested sequence By, | B, where B is the intersection B = N, B,,. For all n, define 4,, = B, \ B. Then we
have A,, is a nested sequence, and A,, | 0 (indeed, N, 4,, = N, (B, NB¢) = (N, B,,)NB* = BNB° = {)).
Therefore p(A,) | 0. But since B C B,,, we have B,, = A,, U B where the union is disjoint. Thus by
finite additivity, u(By) = u(Ay) + p(B). Finally, since 1(Ay,) | 0, we have u(B,,) | p(B).

(2.3) Give an example of a measurable space (S, S), a collection .4 and probability measures p and v such
that

o u(A)=v(A)forall Ac A

e S=0(A)

o LFUV
answer Consider S = {1,2,3,4}, S = P(5), A = {{1,2},{2,3}}. Note that we have 0(A) = S. Now
define p and v by

o u({1}) = p({2}) = p({3}) = 1/3 and u({4}) = 0 (this completely determines u by finite additivity)

e v({1}) =v({3}) =0, v({2}) = 2/3 and v({4}) = 1/3 (this completely determines v by finite additiv-
ity).
Then we have p({1,2}) = v({1,2}) = 2/3 and pu({2,3}) = v({2,3}) = 2/3, i.e. p and v agree on A, but u

and v are different.

(2.4) Let p be a probability measure on (S,S), where S = o(F) for a field F. Show that for each B € S
and € > 0, there exists A € F such that u(BAA) < e

proof Since F is a field, it is in particular closed under intersection, thus it forms a m-class of subsets of
S. Now let B be the collection of subsets

B={BCS:Ve>0,3A€ F: u(BAA) <e

it suffices to show that B is a A-class, then by Dynkin’s Lemma, we have o(F) C B, i.e. § C B, which proves
the claim.
Now let us show that B is a A-class that contains F:

e we have S € B: indeed, for all € > 0, we have 1(SAS) = u(0) =0 < e, and S € F (since F is a field)

e let By, By € B. We seek to show that B = By \ B2 € B. Fix ¢ > 0. There exist Ay, A2 such that
w(B1AA;) < €/2 and p(BaAAs) < €/2. Now consider A = A; \ As. We have

BAA=(BNA°)U(B°NA)

the first term is BNA® = (B1NBS)N(AJUA,) = (BiNBSNAS)U(B1NBSNA2) C (B1NA§)U(BSNA,) C
(B1AA;)U(B3AA,). Similarly, the second term is also a subset of (B1AA;)U(B2AAg) (by symmetry
in A, B). Therefore

BAA C (B1AA;) U (BAA)

and its measure is < p((B1AA;) U (BoAAs)) < u(B1AAy) 4 pu(BaAAs) < e.



e Let B, be a nested sequence of elements of B, such that B, 1 B. We seek to show that B € B. Fix
e > 0. Since B, 1 B, then u(B,) 1 u(B). Thus there exists N such that pu(By) > u(B) — €/2. Since
By € B, there exists A € F such that u(ByAA) < €/2. Now consider BAA. We have can write
B =By UZ where Z = B\ By and u(Z) < €¢/2. Then we have

BAA = (B°NA)U(BNA°)

=(B{NZ°NA)U(({(ByUZ)N A9
(By NA)U (BN NAS)U(ZNAY)
(

-
- BNAA) uz

therefore
(BAA) < u(BNAA) + pl(Z) < /2 + ¢/2

and it follows that B € B

Finally, B contains F since for all B € F and for all € > 0, u(BAB) = u(#) = 0 < e. This concludes the
proof.

(2.5) Let g : [0,1] — R be integrable w.r.t. Lebesgue measure. Let ¢ > 0. Show that there exists a
continuous function f : [0,1] — R such that [ |f(z) — g(z)|dz <e.

proof We first show that there exists a simple function s : [0,1] — R such that [ |s(z) — g(x)| < €/2. This
follows from the definition of the integral of an integrable function

/gdu= /g+du—/g‘du

where [ gTdu = sup s simple,s<g+ sdp (and similarly for g, both functions being non-negative). Therefore
there exist simple functions s; and s, such that

s1<gt

s < g

/31 2/9+dﬂ—€/4
/52 Z/gfdu—E/‘l

define a simple function s = s; — s5. Then we have

/Is—gldu=/|81—82—g++g‘|

< / |s1 — g™ |dp + / [s2 — g7 |du by the triangle inequality
<e/d+e€/4 by definition of s1, so

Now it suffices to show that any simple function s defined on [0, 1] can be approximated by a continuous
function on [0,1], in the following sense: there exists f : [0,1] — R continuous, such that [|s — f] < €/2.
We can write s as the finite sum of scaled indicator functions

n
s = E cila,
i=1



where for all i, A; C [0,1] is a Lebesgue measurable set, and the A;’s are disjoint. By regularity of the
Lebesgue measure, there exist a compact set K; and an open set O; such that

K; CA, CO;

€
M(Ai \Kz) < M
uOi\ A)) <

~ 4¢i|n

in particular, we have u(0; N K¢) < el
there exists a continuous function f; : [0,1] — R such that f; is identically 0 on Of, and identically 1 on K,

therefore

. Now consider the closed sets Of and K;. By Urysohn’s Lemma,

o |fi(z) —1a,(x)=0forall z € O UK;
o |fi(z)—1a,(z)|<1forallze (OfUK;)®=0,NKS

o [|fi—1a,ldp < p(O;NKE) <

€
2|ci|n

Now consider the function f = >""_, ¢; fi. We have f is continuous as the finite sum of continuous functions,
and

[l fldu= [13citra, = f)lan
i=1

S |Cz| |f2_11

2led [l

n
< § :|c,|;
T “2ein
i=1

=€/2

This concludes the proof.



