The setting

- K players
- player k: N_k actions
The setting

- K players
- player k: N_k actions
- joint action vector $i \in [N_1] \times \cdots \times [N_K]$
- loss vector $\ell(i) \in [0, 1]$
The setting

- K players
- player k: N_k actions
- joint action vector $i \in [N_1] \times \cdots \times [N_K]$
- loss vector $\ell(i) \in [0, 1]$
- players randomize: mixed strategy profile $\pi \in \Delta[N_1] \times \cdots \times \Delta[N_K]$

$$\pi(i) = p^{(1)}(i_1) \ldots p^{(K)}(i_K)$$

- joint random action $I \in [N_1] \times [N_K]$, $I \sim \pi$
- expected loss $E[\ell^{(k)}] = \sum_i \pi(i)\ell^{(k)}(i)$
- by abuse of notation $\ell^{(k)}(\pi)$ (can think of it as a linear extension of ℓ from $[N_1] \times \cdots \times [N_K]$ to $\Delta[N_1] \times \cdots \times \Delta[N_K]$)
Nash equilibrium

p is a Nash eq. if for all k and all p'

$$
\ell^{(k)}(p^{(k)}, p^{(-k)}) \leq \ell^{(k)}(p', p^{(-k)})
$$

- no one has an incentive to unilaterally deviate.
- set of Nash equilibria: \mathcal{N}
Correlated equilibria

Correlated equilibria (Aumann)

- Probability distribution \(P \) over \([N_1] \times \cdots \times [N_K]\), which is not necessarily a product distribution
Correlated equilibria

Correlated equilibria (Aumann)

- Probability distribution P over $[N_1] \times \cdots \times [N_K]$, which is not necessarily a product distribution.
- Some coordinator gives advice $I \sim P$.
- If player unilaterally deviates, worse-off in expectation.
Correlated equilibria

Correlated equilibria (Aumann)

- Probability distribution P over $[N_1] \times \cdots \times [N_K]$, which is not necessarily a product distribution
- Some coordinator gives advice $I \sim P$
- If player unilaterally deviates, worse-off in expectation.

Equivalent to “switching j and j' is a bad idea”. For all j, j'

$$\sum_{i: i^k = j} P(i)[\ell^{(k)}(j, i^{(-k)}) - \ell^{(k)}(j', i^{(-k)})] \leq 0$$

Link to internal regret.
Correlated equilibria

Correlated equilibria (Aumann)

- Probability distribution P over $[N_1] \times \cdots \times [N_K]$, which is not necessarily a product distribution
- Some coordinator gives advice $I \sim P$
- If player unilaterally deviates, worse-off in expectation.

Equivalent to “switching j and j' is a bad idea”. For all j, j'

$$\sum_{i : i_k = j} P(i)[\ell(k)(j, i^{(-k)}) - \ell(k)(j', i^{(-k)})] \leq 0$$

Link to internal regret.

Structure of correlated equilibria

- Think of P as a vector in $\Delta^{[N_1] \times \cdots \times [N_K]}$
- Linear inequalities in $P \Rightarrow$ closed convex polyhedron
- Convex combination of Nash eq \Rightarrow correlated eq. (but not \Leftarrow)
Repeated games

- k maintains $p_t^{(k)}$, draws action $l_t^{k} \sim p_t^{(k)}$
- observes all players’ actions $I_t = (l_t^{(1)}, \ldots, l_t^{(K)})$
Repeated games

- k maintains $p_{t}^{(k)}$, draws action $l_{t}^{k} \sim p_{t}^{(k)}$
- observes all players’ actions $l_{t} = (l_{t}^{(1)}, \ldots, l_{t}^{(K)})$
- **Uncoupled play**: player only knows his loss function.
Repeated games

- k maintains $p_{t}^{(k)}$, draws action $l_{t}^{k} \sim p_{t}^{(k)}$
- observes all players’ actions $l_{t} = (l_{t}^{(1)}, \ldots, l_{t}^{(K)})$
- **Uncoupled play:** player only knows his loss function. In fact, only his regret.
Repeated games

- k maintains $p_t^{(k)}$, draws action $l_t^k \sim p_t^{(k)}$
- observes all players’ actions $l_t = (l_t^{(1)}, \ldots, l_t^{(K)})$
- Uncoupled play: player only knows his loss function. In fact, only his regret.

Regret-minimizing procedure

Does the repeated play converge to \mathcal{N} (or other equilibrium concept) in some sense?

Summary of results

- Minimizing regret:
 - average marginal distributions $\bar{p}^{(1)} \times \cdots \times \bar{p}^{(K)}$ converge to \mathcal{N}
 - average joint distribution $p^{(1)} \times p^{(K)}$ converges to the Hannan set
- Minimizing internal regret:
 - average joint distribution $\overline{p^{(1)} \times p^{(K)}}$ converges to correlated equilibria
Regret-minimization Vs. fictitious play

On iteration t, play best response to cumulative losses

\[\ell_t^{(k)} : \text{vector of losses } \ell_t^{(k)}(i^{(k)}) = \ell(k)(i^{(k)}, l_t^{(-k)}) \]

\[L_t^{(k)} = \sum_{\tau=1}^{t} \ell_{\tau}^{(k)} \]
Regret-minimization Vs. fictitious play

On iteration t, play best response to cumulative losses

$$\ell_t^{(k)} : \text{vector of losses } \ell_t^{(k)}(i^{(k)}) = \ell^{(k)}(i^{(k)}, l_t^{(-k)})$$

$$L_t^{(k)} = \sum_{\tau=1}^{t} \ell^{(k)}$$

Fictitious play

$$i_{t+1}^{(k)} \in \arg \min_{i \in [N_k]} L_t^{(k)}(i)$$

equivalent to

$$\min_{p \in \Delta^{[N_k]}} \langle p, L_t^{(k)} \rangle$$

Only converges in very special cases (e.g. 2 players, 2 actions each)

Not Hannan-consistent (does not minimize average expected regret)
Regret-minimization Vs. fictitious play

On iteration t, play best response to cumulative losses

$$\ell_t^{(k)}: \text{ vector of losses } \ell_t^{(k)}(i^{(k)}) = \ell^{(k)}(i^{(k)}, l_t^{(-k)})$$

$$L_t^{(k)} = \sum_{\tau=1}^{t} \ell_{\tau}^{(k)}$$

Fictitious play

$$i_{t+1}^{(k)} \in \arg\min_{i \in [N_k]} L_t^{(k)}(i)$$

equivalent to

$$\min_{p \in \Delta^{[N_k]}} \langle p, L_t^{(k)} \rangle$$

- Only converges in very special cases (e.g. 2 players, 2 actions each)
- Not Hannan-consistent (does not minimize average expected regret)
Regret-minimization Vs. fictitious play

Fictitious play

\[p_{t+1}^{(k)} \in \arg \min_{p \in \Delta^{[N_k]}} \langle p, L_t^{(k)} \rangle \]

Regret-minimization

Some algorithms can be written as

\[p_{t+1}^{(k)} \in \arg \min_{p \in \Delta^{[N_k]}} \langle p, L_t^{(k)} \rangle + \frac{1}{\gamma} R(p) \]
A Minimax theorem

Minimax Theorem via Regret minimization

- $f(x, y)$
- \mathcal{X} convex compact, $f(\cdot, y)$ is convex continuous
- \mathcal{Y} convex compact, $f(x, \cdot)$ is concave continuous.
A Minimax theorem

Minimax Theorem via Regret minimization

- $f(x, y)$
- \mathcal{X} convex compact, $f(\cdot, y)$ is convex continuous
- \mathcal{Y} convex compact, $f(x, \cdot)$ is concave continuous.

Then

$$\inf_x \sup_y f(x, y) = \sup_y \inf_x f(x, y)$$
A Minimax theorem

Minimax Theorem via Regret minimization

- $f(x, y)$
- \mathcal{X} convex compact, $f(\cdot, y)$ is convex continuous
- \mathcal{Y} convex compact, $f(x, \cdot)$ is concave continuous.

Then

$$\inf_x \sup_y f(x, y) = \sup_y \inf_x f(x, y)$$

\geq: OK. When x plays first, worse than playing second.
A Minimax theorem

proof of \leq:
Idea: sequential play $(x_t), (y_t)$, then

$$\inf_x \sup_y f(x, y) \leq \frac{1}{t} \sum_{\tau \leq t} f(x_\tau, y_\tau) \leq \sup_y \inf_x f(x, y) + O\left(\frac{1}{\sqrt{t}}\right)$$
A Minimax theorem

Let $\epsilon > 0$.
Find a finite cover of \mathcal{X} by balls $B(a^{(i)}, \epsilon)$. Use $a^{(i)}$ as the actions.

- x plays first
- Applies regret-minimizing procedure
- action set $\{a^{(i)}\}_i$
- losses $f(a^{(i)}, y_t)$
A Minimax theorem

Let $\epsilon > 0$.
Find a finite cover of \mathcal{X} by balls $B(a^{(i)}, \epsilon)$. Use $a^{(i)}$ as the actions.

- x plays first
- y plays second
- Applies regret-minimizing procedure
- Plays best response
- Action set $\{a^{(i)}\}_i$
- $y_t \in \arg\max_{y \in \mathcal{Y}} f(x_t, y)$
- Losses $f(a^{(i)}, y_t)$

\[
\bar{x}_t = \frac{1}{t} \sum_{\tau=1}^{t} x_\tau \\
\bar{y}_t = \frac{1}{t} \sum_{\tau=1}^{t} y_\tau
\]
A Minimax theorem

Let $\epsilon > 0$.
Find a finite cover of \mathcal{X} by balls $B(a^{(i)}, \epsilon)$. Use $a^{(i)}$ as the actions.

- x plays first
- Applies regret-minimizing procedure
- action set $\{a^{(i)}\}_i$
- losses $f(a^{(i)}, y_t)$

$\bar{x}_t = \frac{1}{t} \sum_{\tau=1}^{t} x_{\tau}$

- y plays second
- plays best response
- $y_t \in \arg\max_{y \in \mathcal{Y}} f(x_t, y)$

$\bar{y}_t = \frac{1}{t} \sum_{\tau=1}^{t} y_{\tau}$
A Minimax theorem

\[
\inf_x \sup_y f(x, y) \leq \sup_y f(\bar{x}_t, y) \\
\leq \frac{1}{t} \sum_{\tau \leq t} f(x_\tau, y) \quad \text{by convexity}
\]

\[
\leq \frac{1}{t} \sum_{\tau \leq t} f(x_\tau, y_\tau) \quad y \text{ plays optimally}
\]

\[
\leq \min_i \frac{1}{t} \sum_{\tau \leq t} f(a^{(i)}, y_\tau) + \sqrt{\frac{\ln N}{2t}} \quad \text{by the regret bound}
\]

\[
\leq \min_i f(a^{(i)}, \bar{y}_t) \sqrt{\frac{\ln N}{2t}} \quad \text{by concavity}
\]

\[
\leq \sup_y \min_i f(a^{(i)}, y) + \sqrt{\frac{\ln N}{2t}}
\]

Then \(t \to \infty \) and \(\epsilon \to 0 \)
Zero-sum two player game

\[\ell^{\text{row}}(i,j) = -\ell^{\text{column}}(i,j) \]

- Matrix of losses: \(M \) such that \(M_{i,j} = \ell^{\text{row}}(i,j) \)
- Joint strategy: \((p, q)\)
- Loss of row player: \(\sum_{i,j} p_i M_{i,j} q_j = \langle p, Mq \rangle \)
Zero-sum two player game

\[\ell^{(row)}(i, j) = -\ell^{(column)}(i, j) \]

- Matrix of losses: \(M \) such that \(M_{i,j} = \ell^{(row)}(i, j) \)
- Joint strategy: \((p, q)\)
- Loss of row player:
 \[\sum_{i,j} p_i M_{i,j} q_j = \langle p, Mq \rangle \]

Nash equilibrium

\((p, q) \) is a Nash eq. iff for all \(p', q' \)

\[\langle p, Mq' \rangle \leq \langle p, Mq \rangle \leq \langle p', Mq \rangle \]
Zero-sum two player game

\[\ell^{(\text{row})}(i, j) = -\ell^{(\text{column})}(i, j) \]

- Matrix of losses: \(M \) such that \(M_{i,j} = \ell^{(\text{row})}(i, j) \)
- Joint strategy: \((p, q)\)
- Loss of row player: \(\sum_{i,j} p_i M_{i,j} q_j = \langle p, Mq \rangle \)

Nash equilibrium

\((p, q)\) is a Nash eq. iff for all \(p', q' \)

\[\langle p, Mq' \rangle \leq \langle p, Mq \rangle \leq \langle p', Mq \rangle \]

In fact, by Von Neumann's minimax theorem,

\[\min_{p'} \max_{q'} \langle p', Mq' \rangle = \max_{q'} \min_{p'} \langle p', Mq' \rangle \]

Call it \(V \), the value of the game.

Value of the game

\((p, q)\) is a Nash eq. \(\Leftrightarrow \langle p, Mq \rangle = V \)
Repeated zero-sum two-player game

- Row player plays first
- Given a sequence of column plays, j_1, j_2, \ldots, score performance of row sequence i_1, i_2, \ldots by evaluating regret

$$\max_i \sum_{t=1}^{T} \ell^{(row)}(i_t, j_t) - \sum_{t=1}^{T} \ell^{(row)}(i, j_t)$$

Can be extended to time varying:

$$\ell^{(row)}(\cdot, \cdot)$$

Note: Implicit assumption: oblivious opponent.

This is not the loss Row would have suffered had he played a constant strategy.
Repeated zero-sum two-player game

- Row player plays first
- Given a sequence of column plays, j_1, j_2, \ldots, score performance of row sequence i_1, i_2, \ldots by evaluating regret

$$\max_i \sum_{t=1}^{T} \ell^{(row)}(i_t, j_t) - \sum_{t=1}^{T} \ell^{(row)}(i, j_t)$$

- Can be extended to time varying: $\ell_t^{(row)}$
Repeated zero-sum two-player game

- Row player plays first
- Given a sequence of column plays, j_1, j_2, \ldots, score performance of row sequence i_1, i_2, \ldots by evaluating regret

$$\max_i \sum_{t=1}^{T} \ell^{(row)}(i_t, j_t) - \sum_{t=1}^{T} \ell^{(row)}(i, j_t)$$

- Can be extended to time varying: $\ell_t^{(row)}$

Note

Implicit assumption: oblivious opponent.
This is not the loss Row would have suffered had he played a constant strategy.
Convergence of average losses

If row strategies are Hannan-consistent, then

$$\limsup_{T} \frac{1}{T} \sum_{t=1}^{T} \ell^{(\text{row})}(i_t, j_t) \leq V$$
Repeated zero-sum two-player game

Convergence of average losses

If row strategies are Hannan-consistent, then

$$\limsup_{T} \frac{1}{T} \sum_{t=1}^{T} \ell(\text{row})(i_t, j_t) \leq V$$

- Note: only upper bound: can do much better if column player is not adversarial
Repeated zero-sum two-player game

Convergence of average losses

If row strategies are Hannan-consistent, then

\[
\limsup_{T} \frac{1}{T} \sum_{t=1}^{T} \ell^{(row)}(i_t, j_t) \leq V
\]

- Note: only upper bound: can do much better if column player is not adversarial
- proof: suffices to show

\[
\limsup_{T} \min_{i} \frac{1}{T} \sum_{t=1}^{T} \ell^{(row)}(i, j_t) \leq V
\]

(then use regret bound)
Repeated zero-sum two-player game

proof:

$$\min_i \frac{1}{T} \sum_{t=1}^T \ell^{(row)}(i, j_t) = \min_i \frac{1}{T} \sum_{t=1}^T \langle p, Me_{j_t} \rangle$$

$$= \min_p \left\langle p, M \frac{1}{T} \sum_{t=1}^T e_{j_t} \right\rangle$$

$$\leq \min_p \max_q \langle p, Mq \rangle$$

$$= V$$
Repeated zero-sum two-player game

If both players minimize regret, average distributions converge to \mathcal{N}

- $\tilde{p}_t = \frac{1}{t} \sum_{\tau \leq t} p_\tau$
- $\tilde{q}_t = \frac{1}{t} \sum_{\tau \leq t} q_\tau$

$$\tilde{p}_t \times \tilde{q}_t \to \mathcal{N}$$
Repeated zero-sum two-player game

If both players minimize regret, average distributions converge to \mathcal{N}

- $\bar{p}_t = \frac{1}{t} \sum_{\tau \leq t} p_{\tau}$
- $\bar{q}_t = \frac{1}{t} \sum_{\tau \leq t} q_{\tau}$

$$\bar{p}_t \times \bar{q}_t \rightarrow \mathcal{N}$$

- Does not prove convergence of actual probability sequences (p_t, q_t)
- Typical example: sequences (p_t, q_t) oscillate, but averages (\bar{p}_t, \bar{q}_t) converge to \mathcal{N}
Repeated zero-sum two-player game

If both players minimize regret, average distributions converge to \(\mathcal{N} \)

- \(\bar{p}_t = \frac{1}{t} \sum_{\tau \leq t} p_{\tau} \)
- \(\bar{q}_t = \frac{1}{t} \sum_{\tau \leq t} q_{\tau} \)

\[\bar{p}_t \times \bar{q}_t \rightarrow \mathcal{N} \]

- Does not prove convergence of actual probability sequences \((p_t, q_t)\)
- Typical example: sequences \((p_t, q_t)\) oscillate, but averages \((\bar{p}_t, \bar{q}_t)\) converge to \(\mathcal{N} \)
- Also does not prove convergence of average joint distribution, \(\bar{p} \times \bar{q} \)

\[\bar{p} \times q_t(i, j) = \frac{1}{T} \sum_{\tau \leq t} p_t(i)q_t(j) \]
Note: average marginals Vs. average joint

They are not the same

\[
\bar{p}_t \times \bar{q}_t(i,j) = \frac{1}{T^2} \sum_{t=1}^{T} \sum_{t'=1}^{T} p_t(i)q_{t'}(j)
\]

\[
\overline{p \times q}_t(i,j) = \frac{1}{T} \sum_{t=1}^{T} p_t(i)q_t(j)
\]
Correlated equilibria and internal regret

Back to general K player game.
Let \bar{P} be the average joint distribution

$$\bar{P}_t(i) = \frac{1}{t} \sum_{\tau \leq t} p^{(1)}(i_1) \ldots p^{(K)}(i_K)$$
Correlated equilibria and internal regret

Back to general K player game.
Let \bar{P} be the average joint distribution

$$\bar{P}_t(i) = \frac{1}{t} \sum_{\tau \leq t} p^{(1)}(i_1) \ldots p^{(K)}(i_K)$$

If every player minimizes regret, \bar{P}_t converges to the Hannan set

$$\mathcal{H} = \{ P : \forall k, \ \forall j, \ \sum_i P(i)\ell^{(k)}(i^{(k)}, i^{(-k)}) \leq \sum_i P(i)\ell^{(k)}(j, i^{(-k)}) \}$$
Correlated equilibria and internal regret

Back to general K player game.
Let \bar{P} be the average joint distribution

$$\bar{P}_t(i) = \frac{1}{t} \sum_{\tau \leq t} p^{(1)}(i_1) \ldots p^{(K)}(i_K)$$

If every player minimizes regret, \bar{P}_t converges to the Hannan set

$$\mathcal{H} = \{ P : \forall k, \forall j, \sum_i P(i) \ell^{(k)}(i^{(k)}, i^{(-k)}) \leq \sum_i P(i) \ell^{(k)}(j, i^{(-k)}) \}$$

\mathcal{H} contains correlated equilibria, but proper superset in most cases.

$$\mathcal{N} \subset \mathcal{C} \subset \mathcal{H}$$
Correlated equilibria and internal regret

Convergence of average joint to C

If players minimize internal regret, then $\bar{P}_t \to C$

Recall the definition of internal regret

Internal regret

$$R_{j,j',T}^{(k)} = \sum_{t=1}^{T} p_{j,t}^{(k)} (\ell(j, I^{(-k)}) - \ell(j', I^{(-k)}))$$

$$R_T = \max_{j,j'} R_{j,j',T}$$
Correlated equilibria and internal regret

Convergence of average joint to C

If players minimize internal regret, then $\bar{P}_t \to C$

Recall the definition of internal regret

Internal regret

$$R_{j,j',T}^{(k)} = \sum_{t=1}^{T} p_{j,t}^{(k)} (\ell(j, I^{(-k)}) - \ell(j', I^{(-k)}))$$

$$R_T = \max_{j,j'} R_{j,j',T}$$

Also recall that we can turn any regret-minimizing procedure over N actions, to internal-regret minimizing procedure, by taking the set of pairs (size N^2)
Summary of results

\[N \subset C \subset \mathcal{H} \]

- **Minimizing regret:**
 - \((\tilde{p}_t^{(1)} \times \cdots \times \tilde{p}_t^{(K)}) \to N \)
 - \((p_t^{(1)} \times \cdots \times p_t^{(K)}) \to N \) ?
 - \(\tilde{P}_t \to \mathcal{H} \)

- **Minimizing internal regret:**
 - \(\tilde{P}_t \to C \), updates \(O(N^2) \)
Summary of results

\[\mathcal{N} \subset \mathcal{C} \subset \mathcal{H} \]

- Minimizing regret:
 - \((\bar{p}_t^{(1)} \times \cdots \times \bar{p}_t^{(K)}) \rightarrow \mathcal{N}\)
 - \((p_t^{(1)} \times \cdots \times p_t^{(K)}) \rightarrow \mathcal{N} \) ?
 - \(\bar{P}_t \rightarrow \mathcal{H}\)

- Minimizing internal regret:
 - \(\bar{P}_t \rightarrow \mathcal{C}\), updates \(O(N^2)\)

- Next
 - (Unknown game: exploration)
 - Blackwell approachability theorem
 - Potential-based approachability
Next week

- Finish Chapter 7 (approachability)
- Application to the routing game