Let μ be a complex measure on (X, A). The associated positive measure $|\mu|$ is defined by, for all $E \in A$

$$|\mu|(E) = \sup \sum |\mu(E_j)|$$

where the sup is taken over all decompositions of E as a union of countably many pairwise disjoint measurable subsets E_j. Show that there exists a measurable function h satisfying $|h| = 1$ $|\mu|$-almost everywhere, such that $\mu = h|\mu|$, that is for all $E \in A$,

$$\mu(E) = \int_E h d|\mu|$$

proof In order to apply the Radon-Nykovym theorem, we first show that $|\mu|(X)$ is finite. Decompose the complex measure μ into

$$\mu = (\mu_R^+ - \mu_R^-) + i(\mu_I^+ - \mu_I^-)$$

where all measures in the decomposition are (positive) finite Radon measures. Then we have for all measurable E, using the fact that for any complex $z = a + ib$, $|z| \leq |a| + |b|

$$|\mu(E)| \leq |\mu_R(E)| + |\mu_I(E)| = \mu_R^+(E) + \mu_R^-(E) + \mu_I^+(E) + \mu_I^-(E)$$

therefore for any partition $X = \bigsqcup_i E_i$,

$$\sum_i |\mu(E_i)| \leq \sum_i (\mu_R^+(E_i) + \mu_R^-(E_i) + \mu_I^+(E_i) + \mu_I^-(E_i))$$

$$= \mu_R^+(X) + \mu_R^-(X) + \mu_I^+(X) + \mu_I^-(X)$$

which is finite. Taking the sup over all such partitions, we obtain $|\mu|(X)$ is finite.

Next, we have by definition of $|\mu|$, for all measurable E,

$$|\mu|(E) \geq |\mu(E)|$$

(1)

since the sup in the definition of $|\mu|$ is taken over all partitions, in particular the partition that contains a single element $\{E\}$.

We have in particular $\mu << |\mu|$, and by the Radon-Nikodym Theorem, there exists a measurable function h such that for all measurable E

$$\mu(E) = \int_E h d|\mu|$$

• first, we show that $|h(x)| \leq 1$ for $|\mu|$-a.e. $x \in X$. Let $A = \{z \in \mathbb{C} : |z| > 1\}$. We seek to show that $h^{-1}(A)$ is a null set. Since A is an open subset of \mathbb{C}, it is the union of countably many closed balls

$$A = \cup_{n \in \mathbb{N}} D(z_n, r_n)$$
let $E_n = h^{-1}(D(z_n, r_n))$. E_n is measurable, and a null set, for otherwise we would have

$$\left| \frac{\int_{E_n} hd\mu}{\mu(E_n)} - z_n \right| = \left| \frac{\int_{E_n} h d\mu}{\mu(E_n)} - z_n \right|$$

$$= \frac{1}{\mu(E_n)} \left| \int_{E_n} (h - z_n) d\mu \right|$$

$$\leq \frac{1}{\mu(E_n)} \int_{E_n} |h - z_n| d\mu$$

$$\leq \frac{1}{\mu(E_n)} \int_{E_n} r_n d\mu$$

since $h(E_n) = D(z_n, r_n)$

$$= r_n$$

and it would follow that $\frac{\mu(E_n)}{\mu(E_n)} \in D(z_n, r_n) \subset A$ which contradicts the fact $|\mu(E_n)| \leq |\mu|(E_n)$ in (1).

Therefore $|\mu|(E_n) = 0$ for all n, then

$$h^{-1}(A) = h^{-1}(\bigcup_{n \in \mathbb{N}} D(z_n, r_n))$$

$$\subset \bigcup_{n \in \mathbb{N}} h^{-1}(D(z_n, r_n))$$

$$= \bigcup_{n \in \mathbb{N}} E_n$$

which is a countable union of null sets, and therefore $h^{-1}(A)$ is a null set.

• next, we show that $h(x) \geq 1$ for $|\mu|$-a.e. x. Let $r \in (0, 1)$ and consider the inverse image of the closed ball

$$E^r = f^{-1}(D(0, r))$$

then we have for any partition $E^r = \bigcup_j E_j^r$

$$\sum_j |\mu(E_j^r)| = \sum_j \left| \int_{E_j^r} f d\mu \right|$$

$$\leq \sum_j \int_{E_j^r} |f| d\mu$$

$$\leq \sum_j \int_{E_j^r} r d\mu$$

$$= r|\mu|(E^r)$$

therefore taking the sup over all such partitions, we have

$$|\mu|(E^r) \leq r|\mu|(E^r)$$

therefore $\mu(E^r) = 0$. We conclude by writing the open unit ball as the countable union of closed balls

$$B = \{ z \in \mathbb{C} : |z| < 1 \} = \bigcup_{n \in \mathbb{N}} D(0, 1 - 1/n)$$

then

$$h^{-1}(B) = h^{-1}(\bigcup_{n \in \mathbb{N}} D(0, 1 - 1/n))$$

$$\subset \bigcup_{n \in \mathbb{N}} h^{-1}(D(1 - 1/n))$$

which is a countable union of null sets, therefore $h^{-1}(B)$ is a null set.
(8.2) Let X be a locally compact Hausdorff space. Regard $C_c(X)$ as a metric space, with metric
\[d(f, g) = \|f - g\|_{C_0} = \sup_{x \in X} |f(x) - g(x)| \]
Show that the completion of $C_c(X)$ is isometric to $C_0(X)$ (consider complex valued functions)

proof Let $(\overline{C_c(X)}, \overline{d})$ be the completion of $(C_c(X), d)$. An element of $\overline{C_c(X)}$ is an equivalence class for the equivalence relation
\[(f_n) \sim (g_n) \iff \lim_{n} d(f_n, g_n) = 0 \]
and the distance \overline{d} is
\[\overline{d}([[f_n]], [[g_n]]) = \lim_{n} d(f_n, g_n) \]
Define the map
\[\phi : \overline{C_c(X)} \to C_0(X) \]
\[[[f_n]] \mapsto \phi([[f_n]]) = f \]
here $[[f_n]]$ is an element of $\overline{C_c(X)}$, (f_n) is one Cauchy sequence in that equivalence class, and f is the limit of (f_n) in $C_0(X)$ (since $C_0(X)$ is complete).

- ϕ is well-defined since if (f_n) and (g_n) are both in $[[f_n]]$, then by definition $d(f_n, g_n) \to 0$. Therefore they have the same limit, since
\[d(g_n, f) \leq d(g_n, f_n) + d(f_n, f) \]
and both terms converge to 0.

- ϕ preserves distances: let $[[f_n]]$ and $[[g_n]]$ be two elements of $\overline{C_c(X)}$, and let $f = \phi([[f_n]])$ and $g = \phi([[g_n]])$. Then we have by the triangle inequality
\[d(f_n, g_n) \leq d(f, f_n) + d(f, g) + d(g, g_n) \]
and both $d(f, f_n)$ and $d(g, g_n)$ converge to 0, therefore taking the limit and using the definition of \overline{d}
\[\overline{d}([[f_n]], [[g_n]]) \leq d(f, g) \]
to show the reverse inequality, we use the triangle inequality again
\[d(f, g) \leq d(f, f_n) + d(f_n, g_n) + d(g, g_n) \]
where $(d(f_n, g_n))$ converges to $\overline{d}([[f_n]], [[g_n]])$, and $(d(f, f_n))$ and $(d(g, g_n))$ converge to 0. Taking the limit gives
\[d(f, g) \leq \overline{d}([[f_n]], [[g_n]]) \]
hence equality of the distances. (a concise way to show it is to use continuity of d on $C_0(X)$). It follows in particular that ϕ is injective.

- ϕ is surjective: it suffices to show that $C_c(X)$ is dense in $C_0(X)$ (then for a given $f \in C_0(X)$, for all n, there exists $f_n \in C_c(X)$ such that $\|f_n - f\|_{C_0} \leq 1/n$. This defines a Cauchy sequence (f_n) of functions in $C_c(X)$, such that $\phi([[f_n]]) = f$). Let $f \in C_0(X)$ and $\epsilon > 0$. Since $f \in C_0(X)$. Then there exists a compact set K_1 such that $\forall x \notin K_1$, $f(x) < \epsilon$. Let
\[F_1 = f^{-1}([\epsilon, +\infty)) \]
since f is continuous, F_1 is a closed. Then F_1 is a closed subset of the compact K_1, and is compact. Similarly,
\[F_2 = f^{-1}([2\epsilon, +\infty)) \]
is compact, and we have
\[F_2 \subset \text{int}(F_1) \subset F_1 \]
(to show this, we have \(F_2 \subset O_{3/2} \subset F_1 \) where \(O_{3/2} = f^{-1}\left((\frac{3}{2}\epsilon, +\infty)\right) \) is open). Now \(F_2 \) and \(\text{int}(F_1) \) are closed, thus by Urysohn’s lemma, there exists a continuous function \(h : X \to [0, 1] \) such that
\[
\begin{align*}
h|_{F_2} & \equiv 1 \\
h|_{\text{int}(F_1)^c} & \equiv 0
\end{align*}
\]
consider the function \(g = fh \in C_c(X) \) (it is continuous as the product of two continuous functions, and has compact support since \(h \) has compact support). We have

- for all \(x \in F_2 \), \(|g(x) - f(x)| = 0\)
- for all \(x \in X \setminus F_1 \), \(|g(x) - f(x)| = |f(x)| \leq \epsilon \) by definition of \(F_1 \)
- for all \(x \in F_1 \setminus F_2 \), \(|g(x) - f(x)| = |f(x)| |1 - h(x)| \leq 2\epsilon \) since \(|f(x)| \leq 2\epsilon \) on \(F_2^c \) and \(|1 - h(x)| \leq 1\).

therefore \(\|g - f\|_{C_0} \leq 2\epsilon \). This proves \(C_c(X) \) is dense in \(C_0(X) \), which completes the proof.

\[(8.3) \] Let \(\mu \) and \(\nu \) be \(\sigma \)-finite Radon measures on a locally compact Hausdorff space \(X \). Consider the Lebesgue decomposition of \(\nu \) with respect to \(\mu \)
\[\nu = \rho + \tau \]
where \(\rho, \tau \) are Borel measures, \(\rho \perp \mu \), and \(\tau \ll \mu \). Show that both \(\rho, \tau \) are also Radon measures.

proof Since \(\rho \) and \(\tau \) are positive measures, we have for all measurable \(E \)
\[\rho(E) \leq \nu(E) \] (2)
Since \(\nu \) is \(\sigma \)-finite, there exists a partition \(X = \bigcup_{n \in \mathbb{N}} X_n \) such that \(\nu(X_n) \) is finite for all \(n \).

- \(\rho \) is outer regular: let \(E \) be a measurable set, and let \(\epsilon > 0 \). Let \(E_n = X_n \cap E \). Since \(\nu(E_n) \) is finite, by outer regularity of \(\nu \) there exists an open \(O_n \supset E_n \) such that
\[\nu(O_n \setminus E_n) \leq 2^{-n} \epsilon \]
Consider the open set \(O = \bigcup_{n \in \mathbb{N}} O_n \). Then we have
\[O \setminus E = (\bigcup_{n \in \mathbb{N}} O_n) \setminus (\bigcup_{n \in \mathbb{N}} E_n) \subset \bigcup_{n \in \mathbb{N}} O_n \setminus E_n \]
therefore
\[
\begin{align*}
\rho(O \setminus E) & \leq \nu(O \setminus E) \\
& \leq \sum_n \nu(O_n \setminus E_n) \\
& \leq \sum_n 2^{-n} \epsilon \\
& \leq \epsilon
\end{align*}
\]
which proves outer regularity.
• \(\rho \) is inner regular. Let \(E \) be a measurable set, and let \(\epsilon > 0 \). Let \(E_n = X_n \cap E \). Since \(\nu(E_n) \) is finite, by inner regularity of \(\nu \) there exists an compact \(K_n \subset E_n \) such that

\[\nu(E_n \setminus K_n) \leq 2^{-n} \epsilon \]

Consider the set \(K = \cap_{n \in \mathbb{N}} K_n \). Then

\[E \setminus K \subset \cup_n E_n \setminus K_n \]

and

\[\rho(E \setminus K) \leq \nu(E \setminus K) \leq \sum_n \nu(E_n \setminus K_n) \leq \sum_n 2^{-n} \epsilon \leq \epsilon \]

thus

\[\rho(K) \geq \rho(E) - \epsilon \]

and \(C_n = \cup_{i \leq n} K_i \) is a nested sequence of compact sets that converges to \(K \), and by \(\sigma \)-additivity of \(\rho \), we obtain

\[\sup_{\text{compact } C \subset E} \rho(C) \geq \rho(E) - \epsilon \]

since \(\epsilon \) is arbitrary, this shows inner regularity.

(8.4) Let \(X \) be locally compact Hausdorff space. A sequence of functions is said to converge weakly to a limit \(f \in C_0(X) \) if

\[\int_X f_n d\mu \to \int_X f d\mu \]

for every complex Radon measure \(\mu \) on \(X \).

1. Show that \(f_n \to f \) weakly if \(f_n(x) \to f(x) \) for every \(x \in X \), and the sequence \((f_n) \) is uniformly bounded.

proof Let \(\mu \) be a complex measure, and decompose \(\mu = \mu_R + i\mu_I \). Then \(|\mu_R(X)| \) and \(\mu_I(X) \) are finite. Since \((f_n) \) is uniformly bounded, there exists \(M > 0 \) such that for all \(n \), \(|f_n| \leq M \), and since \(f \in C_0 \), it is in particular bounded, and there exists \(M' \) such that \(|f| \leq M' \). Thus \((f_n - f) \) is dominated by the integrable function \(M + M' \). Therefore by the dominated convergence theorem,

\[|\lim_n \int_X f_n - f d\mu_R| \leq \lim_n \int_X |f_n - f| d\mu_R \]

\[= \int_X \lim_n |f_n - f| d\mu_R \]

\[= 0 \]

by the DCT

similarly, \(|\lim_n \int_X f_n - f d\mu_I| = 0 \), and combining the two limits, we have the result.
2. Conversely, show that if \(f_n, f \in C_0(X) \) and \(f_n \to f \) weakly, then \(f_n(x) \to f(x) \) for every \(x \in X \), and \((f_n) \) is uniformly bounded.

Pointwise convergence: let \(x \in X \), and consider the measure \(\delta_x \) defined by

\[
\delta_x(E) = \begin{cases}
1 & \text{if } x \in E \\
0 & \text{otherwise}
\end{cases}
\]

\(\delta_x \) is a Radon measure, since

- **\(\delta_x \) is a Borel measure**
- **inner regular**: let \(E \) be a measurable set. Then if \(x \in E \), then \(\{x\} \) is a compact subset of \(E \), and it follows that \(\delta_x(E) = 1 = \sup_{\text{compact } K \subset E} \delta_x(K) \). If \(x \notin E \), for any compact \(K \subset E \), we have \(x \notin K \), thus \(\delta_x(K) = 0 \) and \(\sup_{\text{compact } K \subset E} \delta_x(K) = 0 = \delta_x(E) \), which proves inner regularity.
- **outer regular**: let \(E \) be a measurable set. Then if \(x \in E \), then for any open \(O \supset E, x \in O \), thus \(\delta_x(E) = \inf_{\text{open } O \supset E} \delta_x(O) \). If \(x \notin E \), then there exists an open set \(O \supset E \) such that \(x \notin O \) (since the space is Hausdorff, for all \(y \in E \), there exists open \(O_y \) that contains \(y \) but not \(x \). Then \(O = \bigcup_{y \in E} O_y \) is an open superset of \(E \), and does not contain \(x \), and it follows that \(\inf_{\text{open } O \supset E} \delta_x(O) = 0 = \delta_x(E) \).

We also have for any measurable function \(h \),

\[
\int_X h \, d\delta_x = \int_{\{x\}} h \, d\delta_x = h(x) \quad \text{since } X \setminus \{x\} \text{ has measure 0}
\]

\(\delta_x(X) \) is also finite, therefore \(\delta_x \) is a complex measure, thus \(\int_X f_n \, d\delta_x \to \int_X f \, d\delta_x \), i.e.

\[
\lim_n f_n(x) = f(x)
\]

\((f_n) \) is uniformly bounded: by contradiction, assume not. Then for all \(A > 0 \), there exist infinitely many \(n \in \mathbb{N} \) and \(x_n \in X \) such that \(|f_n(x_n)| > A \). Since \(f \) is \(C_0 \), it is in particular bounded. Let \(M > 0 \) be a bound on \(|f| \).

Construct a subsequence \((f_{n_k}) \), and a sequence of points \((x_k) \) as follows:

- let \(n_1 = 1 \), and \(x_1 \) such that \(|f_n(x_1)| > 1 \) for all \(k \), choose \(n_k > n_{k-1} \), and \(x_k \in X \) such that

\[
\begin{align*}
|f_{n_k}(x_i)| &\leq M + 1 & \forall i < k \\
|f_{n_k}(x_k)| &> 4^k(M_{k-1} + 1)
\end{align*}
\]

where

\[
M_{k-1} = \max\{\|f_{n_1}\|_{C_0}, \ldots, \|f_{n_{k-1}}\|_{C_0}, M\}
\]

(since for all \(i < k \), \((f_n(x_i))_n \) converges to \(f(x_i) \), there exists \(N_i \) such that for all \(n > N_i \), \(\|f_n(x_i) - f(x_i)\| \leq 1 \), thus \(\|f_n(x_i)\| \leq |f| + 1 \leq M + 1 \), then by non-uniform boundedness, there exists \(n \geq \max\{N_1, \ldots, N_{k-1}, n_{k-1}\} \) and \(x \) such that \(|f_n(x_k)| > 4^kM_{k-1} \).

Now define the measure

\[
\mu = \sum_{k=1}^{\infty} c_k \delta_{x_k}
\]

where \(c_1 = 1 \) and \(c_k = \frac{2^{-k}}{1 + M_{k-1}} \leq 2^{-k} \). \(\mu \) is a Radon measure. Let \(E \) be a measurable set. Then

\[
\mu(E) = \sum_{k: x_k \in E} c_k. \quad \text{Let } \epsilon > 0 \text{, and let } N_\epsilon \text{ such that } \sum_{k \geq N_\epsilon} c_k \leq \epsilon
\]

6
inner regularity: consider $K = \{x_1, \ldots, x_{N-1}\} \cap E$ is compact (a finite set), and $\mu(E) - \mu(K) \leq \sum_{k \geq N} c_k \leq \epsilon$.

We also have $\mu(X) = \sum_{k=1}^{\infty} c_k \leq \sum_{k=1}^{\infty} 2^{-k} \leq 1$ (thus it is also a complex measure). By weak convergence, we have

$$\lim_n \int_X (f_n - f) d\mu = 0$$

thus the subsequence $(\int_X (f_{n_i} - f) d\mu)_i$ also converges to 0. Yet, we have

$$| \int_X (f_{n_i} - f) d\mu | \geq \sum_{k=1}^{i-1} |c_k||f_{n_i}(x_k)| - \sum_{k=i+1}^{\infty} |c_k||f_{n_i}(x_k)| \geq 2^{k-1}$$

by the triangle inequality.

now using the properties of (f_{n_k}) and x_k, we have for all $k > 1$

$$|c_k||f_{n_k}(x_k)| > \frac{2^{-k}}{M_{k-1} + 1} 4^k (M_{k-1} + 1) = 2^k$$

for $i = k$

$$|c_k||f_{n_i}(x_k)| \leq \frac{2^{-k}}{M_{k-1} + 1} (M + 1) \leq 2^{-k}$$

for $k < i$ by construction of f_{n_i}

$$|c_k||f_{n_i}(x_k)| \leq \frac{2^{-k}}{M_{k-1} + 1} |f_{n_i}| \leq 2^{-k}$$

for $k > i$ by definition of c_k

$$|f| \leq M$$

combining these inequalities, we have for all $k > 1$

$$| \int_X (f_{n_i} - f) d\mu | \geq 2^k - \sum_{k=1}^{i-1} 2^{-k} - \sum_{k=i+1}^{\infty} 2^{-k} - \sum_{k=1}^{\infty} 2^{-k}$$

which contradicts convergence of the subsequence $(\int_X (f_{n_i} - f) d\mu)_i$ to 0.

(8.5) Let X be a compact Hausdorff space. In this problem we show that there is a meaningful notion of the support of a Radon measure on X.

Let μ be a Radon measure on X. Show that there exists a compact set $K \subset X$ such that $\mu(K) = \mu(X)$, but $\mu(K') < \mu(K)$ for every proper compact subset $K' \subset K$.

proof Let O be the collection of open null subsets of X, and consider

$$O = \cup_{U \in O} U$$

7
then O is open, and O is a null set. Indeed, for all compact $F \subset O$, O is an open cover of F since $\bigcup_{U \in O} U = O \supset F$. Thus there exists a finite subcover, i.e. there exist $U_1, \ldots, U_n \in O$ such that

$$\bigcup_{i=1}^n U_i \supset F$$

thus we have

$$\mu(F) = \mu\left(\bigcup_{i=1}^n U_i\right) \leq \sum_{i=1}^n \mu(U_i) = 0$$

since every $U_i \in O$ is a null set. Therefore by inner regularity of μ on open sets,

$$\mu(O) = \sup_{\text{compact } F \subset O} \mu(F) = 0$$

Now let $K = X \setminus O$. K is compact since it is closed subset of the compact X, and $\mu(K) = \mu(X \setminus O) = \mu(X)$ since O is a null set.

Now let K' be a proper subset of K. Consider the open set $X \setminus K'$. $X \setminus K'$ is not a null set, for otherwise we would have $X \setminus K' \subset O$ (O is the union of all open null sets), i.e. $K' \supset X \setminus O = K$, and this would contradict the fact that K' is a proper subset of K. Therefore

$$\mu(X) - \mu(K') = \mu(X \setminus K)$$

since $\mu(X)$ is finite

$$> 0$$

since $X \setminus K$ is not a null set

which proves $\mu(K') < \mu(X)$.