(3.1) Consider a metric space \((X, d)\).

(a) Let \((x_n)\) be a Cauchy sequence, and assume that a subsequence \((x_{\phi(n)})\) converges to \(l \in X\). Then \((x_n)\) also converges to \(l\).

\[\text{proof}\] Let \(\epsilon > 0\). Since \(x_n\) is a Cauchy sequence, then \(\exists N_1 \in \mathbb{N}\) such that \(\forall n, m \geq N_1, d(x_n, x_m) \leq \epsilon/2\).

And since \((x_{\phi(n)})\) converges to \(l\), then \(\exists N_2 \in \mathbb{N}\) such that \(\forall n > N_2, d(x_{\phi(n)}, l) \leq \epsilon/2\). Let \(N = \max(N_1, N_2)\).

Then we have \(\forall n \geq N, d(x_n, l) \leq d(x_n, x_{\phi(n)}) + d(x_{\phi(n)}, l) \leq \epsilon/2 + \epsilon/2\) (since \(\phi(n) \geq n\)). Thus \((x_n)\) converges to \(l\).

(b) Let \((x_n)\) be a Cauchy sequence. Then \((x_n)\) is bounded.

\[\text{proof}\] Fix \(\epsilon > 0\). We have \(\exists N \in \mathbb{N}\) such that \(\forall n, m \geq N, d(x_n, x_m) \leq \epsilon\). In particular, we have \(\forall n \geq N, d(x_n, x_N) \leq \epsilon\). Let \(r = \max(\epsilon, d(x_0, x_N), \ldots, d(x_{N-1}, x_N))\). Then we have \(\forall n \in \mathbb{N}, d(x_n, x_N) \leq r\), thus \((x_n)\) is bounded.

(3.2) Let \((X, d)\) be a metric space, and \(Y \subset X\). Let \(d'\) be the restriction of \(d\) to \(Y\). Then if \((Y, d')\) is complete, then \(Y\) is a closed subset of \(X\).

\[\text{proof}\] Let \((x_n)\) be a converging sequence of \((X, d)\), such that \(\forall n, x_n \in Y\), and let \(l\) be its limit. To show that \(Y\) is closed, it suffices to show that \(l \in Y\) for any such sequence. First, \((x_n)\) is a Cauchy sequence of \((Y, d')\): since \((x_n)\) converges in \((X, d)\), \(\forall \epsilon > 0, \exists N\) such that \(\forall n \geq N, d(x_n, l) \leq \epsilon/2\), thus \(\forall n, m \geq N, d'(x_n, x_m) = d(x_n, x_m) \leq d(x_n, l) + d(l, x_m) \leq \epsilon\).

Since \((Y, d')\) is complete, the Cauchy sequence \((x_n)\) converges and its limit is in \(Y\). Let \(l' \in Y\) be the limit of \((x_n)\) as a converging sequence of \((Y, d')\). Then \(l'\) is also a limit of \((x_n)\) as a converging sequence of \((X, d)\) since \(\forall \epsilon > 0, \exists N\) such that \(d'(x_n, l') \leq \epsilon\), thus \(d(x_n, l') \leq \epsilon\). By uniqueness of the limit, we have \(l = l'\), thus \(l \in Y\).

(3.3) Let \((X, d_X)\) and \((Y, d_Y)\) be metric spaces, \(f : X \to Y\) a continuous function, and \(G = \{(x, y) \in X \times Y : y = f(x)\}\). Then \(G\) is closed subset of \((X \times Y, d)\) where \(d\) is the product metric \(d(p_1, p_2) = \max(d_X(x_1, x_2), d_Y(y_1, y_2))\).

\[\text{proof}\] \(G\) is the inverse image of the closed set \(\{0\}\) by the continuous function

\[h : (X, Y) \to \mathbb{R}\]

\[(x, y) \mapsto d(f(x), y)\]

Indeed, \((x, y) \in G\) if and only if \(f(x) = y\), if and only if \(d(f(x), y) = 0\). \(h\) is continuous as the composition of the continuous functions \(h_1\) and \(h_2\) given by

\[X \times Y \xrightarrow{h_1} Y \times Y \xrightarrow{h_2} \mathbb{R}\]

where

\[h_1 : X \times Y \to Y \times Y\]

\[(x, y) \mapsto (f(x), y)\]
h_2 : Y \times Y \rightarrow \mathbb{R} \\
(y, y') \mapsto d(y, y')

(3.4)

(a) Let \((X, d_X)\) and \((Y, d_Y)\) be two metric spaces, and let \(f : X \rightarrow Y\) be a homeomorphism. Then \((x_n)\) converges in \(X\) if and only if \((f(x_n))\) converges in \(Y\). Further, \(x_n \rightarrow x\) if and only if \(f(x_n) \rightarrow f(x)\).

Proof Only if: let \((x_n)\) be a converging sequence. Let \(x\) be its limit. Let \(\epsilon > 0\). Since \(f\) is continuous, \(\exists \eta > 0\) such that if \(d_X(x_n, x) \leq \eta\), then \(d_Y(f(x_n), f(x)) \leq \epsilon\). And since \((x_n)\) converges to \(x\), \(\exists N \in \mathbb{N}\) such that if \(n \geq N\), then \(d_X(x_n, x) \leq \eta\). Therefore \(\forall n \geq N\), \(d_Y(f(x_n), f(x)) \leq \epsilon\). This proves that \((f(x_n))\) converges, and that its limit is \(f(x)\).

If: Assume \((f(x_n))\) converges. Let \(y\) be its limit. Let \(\epsilon > 0\). Since \(f^{-1}\) is continuous, there exists \(\eta > 0\) such that if \(d_Y(f(x_n), y) \leq \eta\), then \(d_X(f^{-1}(f(x_n)), f^{-1}(y)) \leq \epsilon\). And since \((f(x_n))\) converges to \(y\), \(\exists N \in \mathbb{N}\) such that if \(n \geq N\), then \(d_Y(f(x_n), y) \leq \eta\). Thus \(\forall n \geq N\), \(d_X(f^{-1}(f(x_n)), f^{-1}(y)) \leq \epsilon\), thus \((x_n)\) converges, and its limit is \(f^{-1}(y)\). Further, if \(f(x_n) \rightarrow f(x)\), then \((x_n) \rightarrow f^{-1}(f(x)) = x\).

(b) \(\mathbb{R}\) is not homeomorphic to \(\mathbb{Q}\).

Proof since \(\mathbb{R}\) is not countable, there are no injective maps from \(\mathbb{R}\) to \(\mathbb{Q}\). Therefore, there are no bijective maps from \(\mathbb{R}\) to \(\mathbb{Q}\).

Proof without using \(\mathbb{R}\) uncountable: assume by contradiction that \(f : \mathbb{Q} \rightarrow \mathbb{R}\) is a homeomorphism. Let \((x_n)\) be a sequence of rationals that converge to an irrational \(x\) ((\(x_n\)) does not converge in \(\mathbb{Q}\), but converges in \(\mathbb{R}\)). Then \((f(x_n))\) is a converging sequence:

- \((x_n)\) is a Cauchy sequence in \(\mathbb{Q}\): let \(d\) be the usual metric on \(\mathbb{R}\) and \(d'\) be its restriction on \(\mathbb{Q}\). Then \(\forall \epsilon > 0\), \(\exists N\) such that \(\forall n \geq N\), \(d(x, x_n) \leq \epsilon/2\). Then \(\forall m, n \geq N\), \(d'(x_n, y) = d(x, x_n) \leq d(x_n, x) + d(x, x_m) \leq \epsilon\).

- \((f(x_n))\) is a Cauchy sequence in \(\mathbb{R}\) as the image bu a continuous function of a Cauchy sequence. Since \(f\) is continuous, \(\forall \epsilon > 0\), there exists \(\eta > 0\) such that if \(d(x, x') \leq \eta\) then \(d(f(x), f(x')) \leq \epsilon\). Then \((x_n)\) is Cauchy, there exists \(N \in \mathbb{N}\) such that for all \(n, m \geq N\), \(d(x_n, x_m) \leq \eta\). Thus for all \(m, n \geq N\), \(d(f(x_n), f(x_m)) \leq \epsilon\).

- \(\mathbb{R}\) is complete. Thus \((f(x_n))\) converges.

Let \(y\) be the limit of \((f(x_n))\). But from (a), \((f(x_n))\) converges to \(y\) only if \((x_n)\) converges to \(f^{-1}(y)\). But \((x_n)\) does not converge in \(\mathbb{Q}\), contradiction.

(c) There is no bounded continuous injective mapping \(f : \mathbb{R} \rightarrow \mathbb{R}^2\) such that the range \(f(\mathbb{R})\) is a closed subset of \(\mathbb{R}^2\).

Proof Assume such a function exists, and let \(B = f(\mathbb{R})\). \(B\) is a closed bounded subset of \(\mathbb{R}^2\), thus is compact. Then \(\hat{f}\) defined by

\[
\hat{f} : \mathbb{R} \rightarrow B \\
x \mapsto f(x)
\]

is a homeomorphism. Now consider the sequence \((x_n)\) defined by \(x_n = n\). Then \((f(x_n))\) is a sequence of elements of the compact set \(B\), therefore admits a converging subsequence \((f(x_{\phi(n)}))_n\). Let \(y\) be its limit. Then by (a), \((x_{\phi(n)})\) must converge, and its limit must be \(f^{-1}(y)\). However, \((x_{\phi(n)})\) cannot converge since it is unbounded. This leads to a contradiction and proves the result.
(3.5) Let \(E \subset \mathbb{R}^n \) be uncountable. Then there exists \(x \in \mathbb{R}^n \) such that for any open ball \(B(x, r) \), \(B(x, r) \cap E \) is uncountable.

Proof by contrapositive: assume that for all \(x \in \mathbb{R}^n \), there exists \(r_x > 0 \) such that \(B(r_x, x) \cap E \) is countable. Let \(B_x = B(r_x, x) \cap E \).

Now consider the metric space \((E, d') \), where \(d' \) is the restriction of the metric \(d \) to \(E \). Then the open sets of \((E, d') \) are the intersections of the open sets of \((\mathbb{R}^n, d) \) with \(E \). In particular, \(B_x = B(r_x, x) \cap E \) is open in \((E, d') \) for every \(x \). Therefore \(\{B_x\}_{x \in E} \) is an open cover of \(E \) (by definition of \(B_x \)), we have \(B_x \subseteq E \), therefore \(\bigcup_{x \in E} B_x \subseteq E \). Conversely, for all \(x_0 \in E, x_0 \in B_{x_0} \), thus \(x_0 \in \bigcup_{x \in E} B_x \), therefore \(E \subseteq \bigcup_{x \in E} B_x \).

Now since \(E \) is separable (\(E \cap \mathbb{Q}^n \) is countable and dense in \(E \)), every open cover has a countable subcover. Let \(\{B_{x_n}\}_{n \in \mathbb{N}} \) be such a subcover. Then we have \(E = \bigcup_{n \in \mathbb{N}} B_{x_n} \), thus \(E \) is a countable union of countable sets (by assumption, \(B_x \) is countable for every \(x \)), therefore \(E \) is countable (from problem set 1, a countable union of countable sets is countable).

(3.6) Let \(f \) be the uniform limit of the functions \(f_n : [0, 1] \to [0, 1]^2 \) defined inductively by the Hilbert construction.

Then we have \(\forall x \in [0, 1] \)

\[
\|f_n(x) - f_{n+m}(x)\|_2 \leq \sum_{k=0}^{m-1} \|f_{n+k}(x) - f_{n+k+1}(x)\|_2
\]

and the distance between \(\|f_{n+k}(x) - f_{n+k+1}(x)\|_2 \) is at most the diagonal of the square at the \(n + k \)-th step, i.e. \(\|f_{n+k}(x) - f_{n+k+1}(x)\|_2 \leq \sqrt{2}(1/2)^{n+k} \). Thus

\[
\|f_n(x) - f_{n+m}(x)\|_2 \leq \sqrt{2}(1/2)^n \sum_{k=0}^{m-1} (1/2)^k \leq \sqrt{2}(1/2)^n (1/2)
\]

thus

\[
\|f_n - f_{n+m}\|_\infty \leq \sqrt{2}(1/2)^n (1/2)
\]

Therefore \((f_n) \) is a Cauchy sequence in the complete subspace of continuous functions on \([0, 1]^2 \) (with the metric induced by the infinite norm), thus converges. Let \(f \) be its limit. Then \(f \) is continuous (as a uniform limit of continuous functions) and is surjective: let \(y \in [0, 1]^2 \), and fix \(\epsilon > 0 \). Then we can find \(x \) such that \(\|f(x) - y\| \leq \epsilon \): there exists \(N_1 \in \mathbb{N} \) and \(x_1 \in [0, 1] \) such that for all \(n \geq N_1 \), \(\|f_n(x) - y\| \leq \epsilon/2 \). And since \((f_n) \) converges uniformly to \(f \), there exists \(N_2 \) such that for all \(n \geq N_2 \), \(\|f - f_n\|_\infty \leq \epsilon/2 \). Let \(N = \max(N_1, N_2) \), then \(\|f(x) - y\| \leq \|f - f_N\|_\infty + \|f_N(x) - y\| \leq \epsilon \).

Now construct a sequence \((x_n) \) of elements of \([0, 1] \) such that \(\forall n \|f(x_n) - y\| \leq 1/n \). Since \([0, 1]\) is compact, \((x_n) \) admits a converging subsequence \((x_{n+}\)\() \), let \(x \) be its limit. Then \(f(x_{n+}) \) is converging by continuity of \(f \), and its limit is \(f(x) \) by continuity, and \(y \) by construction, therefore \(f(x) = y \) and \(f \) is surjective.

(3.7) Let \(O \) be a nonempty open subset of \(\mathbb{R} \). Then there exists a countable collection \(\{I_j\} \) of pairwise disjoint open intervals such that \(O = \bigcup_j I_j \).

Proof: For every \(x \in O \) let \(C_x = \{J \subset O : J \) is an open interval containing \(x\} \), and \(I_x = \bigcup_{J \in C_x} J \). \(I_x \) is by construction an open interval, and a subset of \(O \) that contains \(x \).

We have \(\{I_x\}_{x \in O} \) is an open cover of \(O \) since

- \(\forall x \in O, \forall J \in C_x, J \subset O \), thus \(\forall J \in C_x \), \(J \subset O \), i.e. \(I_x \subseteq O \). Thus \(\bigcup_{x \in O} I_x \subseteq O \).

- \(\forall x \in O \), let \(x \in I_x \), thus \(x \in \bigcup_{x \in O} I_x \). Therefore \(O \subseteq \bigcup_{x \in O} I_x \). This proves that \(O = \bigcup_{x \in O} I_x \).

The distinct elements of \(\{I_x\}_{x \in O} \) are disjoint: to prove this (by contrapositive), assume that \(I_x \cap I_{x'} \neq \emptyset \). Then \(I_x \cup I_{x'} \) is an open interval, is a subset of \(O \), and contains \(x \), thus it is a member of \(C_x \), thus \(I_x \cap I_{x'} \subseteq I_x \).
Obviously, we also have \(I_x \subseteq I_x \cap I_{x'} \), therefore we have \(I_x = I_x \cap I_{x'} \). Similarly, we have \(I_{x'} = I_x \cap I_{x'} \), which proves the result.

Finally, \(\{I_x\}_{x \in \mathcal{O}} \) is countable, since every distinct element \(I_x \) contains a rational, say \(r(I_x) \in I_x \) (since \(\mathbb{Q} \) is dense in \(\mathbb{R} \)), one can construct a map (using the axiom of choice)

\[
i : \{I_x\}_{x \in \mathcal{O}} \to \mathbb{Q} \\
i(I_x) \mapsto r(I_x)
\]

\(i \) is injective (since the elements of \(\{I_x\}_{x \in \mathcal{O}} \) are disjoint, and \(r(I_x) \in I_x \)), and \(\mathbb{Q} \) is countable, therefore \(\{I_x\}_{x \in \mathcal{O}} \) is countable.