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(5.1) Show that there exists a continuous function F : [0, 1] → R which is monotonic on no interval of
positive length.

proof We know there exists a continuous function F : [0, 1]→ R that is nowhere differentiable. Then F is
monotonic on no interval of positive length. Indeed, assume by contradiction that there exists an interval I
with m(I) > 0 and F is monotonic on I. Then by Lebesgue’s theorem, since F is monotone on I, F ′ exists
almost everywhere on I. This contradicts the fact that F is nowhere differentiable.

(5.2) Construct an example of a nondecreasing function F : R→ R such thar F ′(x) exists for every x ∈ R,
yet F ′ is not continuous.

proof Consider the function

F : R→ R

x 7→ F (x) =

{
x if x ≤ 0

x2(sin(1/x) + 1) + x if x > 0

Continuity of f We have F is continuous on (0,+∞) and (−∞, 0). F is also left continuous at 0, and it
remains to show right continuity at 0. We have for all x > 0, 0 ≤ sin(1/x) + 1 ≤ 2, thus

x ≤ F (x) ≤ 2x2 + x

and both sides converge to 0 as x tends to 0. Therefore

lim
x↘0

F (x) = 0 = F (0)

and F is continuous at 0.

Differentiability of f We have F is differentiable on (−∞, 0), and for all x < 0, F ′(x) = 1. F is also
differentiable on (0,+∞), and for all x > 0,

F ′(x) = 2x(sin(1/x) + 1)− cos(1/x) + 1

and since 1− cos(1/x) ≥ 0 and sin(1/x) + 1 ≥ 0, then F (x) ≥ 0 for all x > 0. For differentiability at 0, we
have

lim
x↗0

F (x)− F (0)

x− 0
= lim
x↗0

x sin(1/x) + x+ 1 = 1
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since for all x > 0, |x sin(1/x)| ≤ x. We also have

lim
x↘0

F (x)− F (0)

x− 0
= lim
x↘0

1 = 1

therefore F is differentiable at 0 and F ′(0) = 1.
Therefore F ′ exists everywhere, and satisfies ∀x ∈ R, F ′(x) ≥ 0, and as a consequence, F is non decreasing

on R. However F ′ is not continuous at 0 since in the expression F ′(x) = 2x(sin(1/x) + 1)− cos(1/x) + 1 all
terms converge as x↘ 0 except cos(1/x).

(5.3) Let f be a real valued function of bounded variation on an interval [a, b]. Show that if f is continuous
at some x ∈ [a, b], then x 7→ V f([a, x]) also continuous (where Vf ([a, x]) is the total variation of f on [a, x]).

proof We overload the notation of the variation Vf , such that if P ) is the partition x0 < x1 < · · · < xn,
then

Vf (P ) =

n∑
i=1

|fi(x)− fi−1(x)|

and the total variation of f on a segment is the supremum

Vf ([a, b]) = sup
P∈P ([a,b])

Vf (P )

First, we prove the following

Lemma 1 If f is of bounded variation, and α < β < γ, then

Vf ([α, γ]) = Vf ([α, β]) + Vf ([β, γ])

For any P partition of [α, γ], consisting of the points α = x0 < · · · < xn = γ, let xi0 be such that
xi0 ≤ β < xi0+1. Then we have

Vf (P ) =

n∑
i=1

|f(xi)− f(xi−1)|

≤

(
i0∑
i=1

|f(xi)− f(xi−1)|+ |f(β)− f(xi0)|

)
+

(
f(xi0+1)− f(β)|+

i0+1∑
i=1

|f(xi)− f(xi−1)|

)
≤ Vf ([α, β]) + Vf ([β, γ])

thus taking the sup over all such partitions, we have

Vf ([α, γ]) ≤ Vf ([α, β]) + Vf ([β, γ])

To show the reverse inequality, we have for all ε > 0, there exist P and P ′, partitions of [α, β] and [β, γ]
respectively, such that

Vf (P ) > Vf ([α, β])− ε/2
Vf (P ′) > Vf ([β, γ])− ε/2

now consider P ∪ P ′. This is a partition of [α, γ], and

Vf ([α, γ]) ≥ Vf (P ∪ P ′)
≥ Vf (P ) + Vf (P ′)

≥ Vf ([α, β]) + Vf ([β, γ])− ε

since this holds for all ε, we have Vf ([α, γ]) ≥ Vf ([α, β]) + Vf ([β, γ]) and the Lemma is proved.
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proof Let x ∈ [a, b] be fixed, and let f be continuous at x. We first show that V (f) is right continuous at
x. Let ε > 0. We seek to find δ > 0 such that for all y ∈ [a, b], |y − x| ≤ δ ⇒ |V (f)(x)− V (f)(y)| ≤ ε.

By definition of the total variation of f on [x, b] (which is finite since f is of bounded variation), there
exists a partition P[x,b] of [x, b] such that

Vf (P[x,b]) ≥ Vf ([x, b])− ε/2

let x1 be the smallest point in P \ {x}. By continuity of f at x, there exists δ > 0 such that if |y − x| ≤ δ,
then |f(x) − f(y)| ≤ ε/2. Let δ′ = min(δ, x1 − x). Let y ∈ (x, x + δ′) (this ensures that x ≤ y < x1). Now
consider the partition [x, b] obtained by adding y to P

P ′[x,b] = P[x,b] ∪ {y}

By the triangle inequality, we have
Vf (P ′[x,b]) ≥ Vf (P[x,b])

Finally, consider the partition of [y, b], obtained by removing x from P ′[x, b]

P[y,b] = P ′[x,b] \ {x}

we have
Vf (P ′[x,b]) = |f(x)− f(y)|+ Vf (P[y,b]) ≤ ε/2 + Vf (P[y,b])

Combining these inequalities, we have

Vf ([x, y]) = Vf ([x, b])− Vf ([y, b]) by the Lemma

≤ Vf (P[x,b]) + ε/2− Vf ([y, b])

≤ Vf (P ′[x,b]) + ε/2− Vf ([y, b])

≤ ε/2 + Vf (P[y,b]) + ε/2− Vf ([y, b])

≤ ε

Therefore ∀y ∈ (x, x + δ′), Vf ([x, y]) ≤ ε. Therefore x 7→ Vf ([a, x]) is right continuous at x. A similar
argument shows that it is left continuous at x, hence continuity.
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(5.4) Let K ⊂ R be a countable compact set. Show that there exists a Borel measure µ such that µ(K) = 1,
µ(R \K) = 0, and µ({x}) = 0 for all x ∈ R.

proof If there exists an open interval I such that I ⊆ K and µ(I) > 0, then the measure µ defined by

µ(E) =
1

m(I)
m(E ∩ I) =

1

m(I)

∫
E

1Idm

satisfies the desired properties, since µ(K) = 1
µ(I)µ(I) = 1, µ(R \ K) = 1

µ(I)µ(∅) = 0, and for all x ∈ R,

µ({x}) = 1
µ(I)m({x} ∩ I) = 0.

Now consider the case where there exists no such interval, i.e. int(K) = ∅. Kc is open, thus is a countable
union of disjoint open interval.

K = ∪n∈NIn
where each In = (an, bn).

Inspired by the construction of the Cantor function, we seek to construct a sequence of functions Fn that
are continuous non decreasing, and that satisfy:

∀m ≥ n, |Fn − Fm| ≤ 2−n

and such that their limit is constant on Kc. We organize the construction in “generations”, where in each
generation n, we have 2n + 1 intervals (In,k), k ∈ {0, . . . , 2n}, and such that

• In,k is always (strictly) to the left of In,k+1, i.e. bn,k < an,k+1

• the set of points in K between any two consecutive intervals is uncountable, i.e. for all k, (bn,k, an,k+1)∩
K is uncountable.

More precisely, for n = 0, we observe that since K is bounded, there exists n0 such that an0 = −∞ and
n1 such that bn1 = +∞.

I0,0 = In0

I0,1 = In1

then we have the desired properties. Then by induction, assume {In,k}k constructed. Then for all even k,
define In+1,k/2 = In,k, and for all odd k, find an interval (am, bm) such that bn,k/2 < am < bm < an,k/2+1

such that (bn,k/2 < am)∩K and (bn,k/2 < am)∩K are both uncountable. The following Lemma guarantees
that we can do this construction

Lemma 2 If J ⊆ [α, β] is an uncountable compact set with empty interior, then there exists an open interval
(a, b) ⊂ Jc such that [α, a] ∩ J and [b, β] ∩ J are both uncountable.

The complement of J is open, thus is the countable union of open intervals Jc = ∪n∈NIn. By contradiction,
assume that for all n, one of [α, an] ∩ J and [bn, β] ∩ J is countable. Call it Cn. C = ∪n∈NCn is a countable
subset of J , thus J \ C is uncountable. Let x < y be two points in J \ C. Since J has empty interior, there
exists z ∈ (x, y)∩Jc, in particular there exists n such that z ∈ In, and In ⊆ [x, y]. Therefore x and y cannot
be on the same side of In, and one of them has to be in Cn. This contradicts the definition of x, y. This
concludes the proof of the lemma.

Now that the intervals In,k are constructed, we can define Fn : R→ [0, 1] by

Fn(x) = k/2n∀x ∈ Ik,n

and Fn is affine between bn,k and an,k+1, i.e. Fn(x) = 2−n(k+
x−bn,k

an,k−bn,k
). By construction, Fn is continuous

non decreasing. We also have that for all m ≥ n, Fm agrees with Fn on ∪kIn,k, and for all x /∈ ∪kIn,k there
exists k such that x ∈ [bn,k, an,k+1], then both Fn(x) and Fm(x) are in [k/2n, (k + 1)/2n], therefore

sup
x
|Fn(x)− Fm(x)| ≤ 2−n+1
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and (Fn)n is a Cauchy sequence (for the sup). Then it converges and its limit F is continuous (for every x,
(Fn(x))n is Cauchy, thus it converges. Let F (x) be its limit. Now (F − Fn) converges uniformly to zero,
therefore F is the uniform limit of continuous functions and is continuous).

F is also nondecreasing as the limit of a sequence of nondecreasing functions. Finally, F is constant on
each interval In ⊆ Kc. Indeed, let x < y ∈ In, and let ε > 0. We show that |F (x)− F (y)| ≤ ε. Let m such
that 2−m ≤ ε, and consider the intervals Im,k, k ∈ {0, . . . , 2m}. If In is one of these intervals, then we are
done (F is by definition constant on such intervals). Otherwise, there exists k such that bm,k < x < y < bm,k
(the intervals that form Kc are disjoint). Therefore k/2n ≤ F (x) ≤ F (y) ≤ (k + 1)/2n, which proves that

|F (y)− F (x)| ≤ 2−n ≤ ε

since this holds for arbitrary ε, we have equality.
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(5.5) Find all continuous nondecreasing functions F : R → R such that F ′(x) = 0 for all but countably
many x ∈ R

proof Any such function is constant. To prove this, let a < b ∈ R. We seek to prove that F (a) = F (b).
Let E = {x ∈ R|f ′(x) = 0}. The complement of E is countable by assumption, so let Ec = {bn, n ∈ N} be
the set of “bad” points.

Now let ε > 0. Let x ∈ E. We have f ′(x) = 0, i.e.

lim
y→x

f(y)− f(x)

y − x
= 0

Thus there exists δx such that

∀y ∈ B(x, δx), |f(y)− f(x)| ≤ ε|y − x|

For all bn ∈ Ec, by continuity of f at bn, there exists δbn > 0 such that

∀y ∈ B(bn, δbn), |f(bn)− f(y)| ≤ ε/2n

The open balls {B(x, δx), x ∈ E} ∪ {B(bn, δbn), n ∈ N} form an open cover of R (indeed, R = E ∪ Ec, and
for all x ∈ E, x ∈ B(x, δx), and for all bn ∈ Ec, bn ∈ B(bn, δbn)), so in particular, it forms an open cover
of [a, b]. Since [a, b] is compact, we can extract a finite subcover, thus there exists a finite set of points
a ≤ x1 ≤ · · · ≤ xK ≤ b such that [a, b] ⊆ ∪Kk=1B(xk, δxk

). Denote by Bk = B(xk, δxk
).

We assume, without loss of generality, that the set {B1, . . . , BK} is minimal (for inclusion). In this case,
we have for all k, Bk ∩ Bk+1 6= ∅ 1. For all k ∈ {1, . . . ,K − 1}, let pk ∈ Bk ∩ Bk+1, and let p0 = a and
pK = b. This defines a partition

a = p0 ≤ p1 ≤ · · · ≤ pK = b

such that for all k ∈ {1, . . . ,K}, pk−1 and pk are contained in Bk. Therefore we have

F (b)− F (a) =

K∑
k=1

|F (pk)− F (pk−1)|

and for all k, |F (pk)− F (pk−1)| ≤ |F (pk)− F (xk)|+ |F (xk)− F (pk−1)|, two cases can occur

• if xk is a good point (i.e. xk ∈ E), then

|F (pk)− F (xk)|+ |F (xk)− F (pk−1)| ≤ ε|pk − xk|+ ε|xk − pk−1| = ε|pk − pk−1|

• if xk is a bad point, i.e. xk = bn for some n, then

|F (pk)− F (xk)|+ |F (xk)− F (pk−1)| ≤ 2ε/2n

therefore

F (b)− F (a) =

K∑
k=1

|F (pk)− F (pk−1)|

≤
K∑
k=1

ε|pk − pk−1|+
∑
n∈N

2ε/2n

≤ ε|b− 1|+ 4ε

since this is true for arbitrary ε > 0, we have F (b)− F (a) = 0.

1if Bk ∩Bk+1 = ∅, then xk + δxk ≤ xk+1 − δxk+1 , and there exists p such that

xk + δxk ≤ p ≤ xk+1 − δxk+1

i.e. p is not in Bk ∪ Bk+1. Since we have a cover, there exists k′ such that p ∈ Bk′ , but then we either have k′ > k + 1, in
which case Bk′ ⊃Bk+1, or k

′ < k, in which case Bk′ ⊃Bk. Both cases contradict minimality of the cover.
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(5.6.a) Show that if p ∈ [1,∞) and f ∈ Lp(Rn) with respect to the Lebesgue measure, then the mapping

φ : Rn → Lp

t 7→ φ(t) = ft = x 7→ f(x− t)

is continuous. In particular, limt→0 ft = f in Lp norm. Here Lp is the metric space of equivalence classes.

proof Let ε > 0. We have the space of continuous compactly supported functions (C0) is dense in Lp.
Therefore there exists a function g ∈ C0 such that

‖f − g‖p ≤ ε/3

We also have for all t, ‖ft − gt‖p ≤ ε/3 since ‖ft − gt‖pp =
∫
Rn |f(x− t)− g(x− t)|pdx =

∫
Rn |f(y)− g(y)|pdy

by the change of variable y = x− t. Now we have by the triangle inequality, for all t,

‖f − ft‖p ≤ ‖f − g‖p + ‖g − gt‖p + ‖gt − ft‖p
≤ ε/3 + ‖g − gt‖p + ε/3

in order to bound the term ‖g − gt‖p, we use the fact that there exists a compact K ⊂ Rn such that g is
zero outside of K. Then let K ′ = K + B(0, 1) = {x+ y|x ∈ K, |y| ≤ 1}. Then we have for all |t| ≤ 1, gt is
zero outside K ′ (gt(x) 6= 0 ⇒ g(x− t) 6= 0 ⇒ x− t ∈ K ⇒ x ∈ K ′). Therefore for all |t| ≤ 1, g − gt is zero
outside of K ′, and

‖g − gt‖pp =

∫
K′
|g − gt|pdm

g is continuous on the compact set K ′+B(0, 1), then g is uniformly continuous on that set, and there exists
δ > 0 (and δ < 1) such that for all x ∈ K ′ and for all t ∈ B(0, δ), |g(x)− g(x− t)| ≤ ε

3(1+m(K′)) .

Then for all t ∈ B(0, δ), integrating over K ′, we have

‖g − gt‖p ≤ m(K ′)
ε

3(1 +m(K ′))
≤ ε/3

therefore for all t ∈ B(0, δ)

‖f − ft‖p ≤ 3ε/3

which concludes the proof.

(5.6.b) The previous result is false for p = ∞. However, show that if f ∈ C0(Rn) (continuous functions
with a bounded support), then

lim
t→0
‖ft − f‖∞ = 0

proof Let f ∈ C0. Then there exists a compact K ⊂ Rn such that f is zero outside K. As previously,
consider K ′ = K +B(0, 1). We have for all t ∈ B(0, 1), both f and ft are zero outside K ′

Since f is continuous on the compact K ′ + B(0, 1), it is uniformly continuous. Let ε > 0. Then there
exists δ > 0 (and δ < 1) such that for all x, y ∈ K ′ + B(0, 1), |x − y| ≤ δ ⇒ |f(x) − f(y)| ≤ ε. Then for
all t ∈ B(0, δ), we have for all x ∈ K ′, both x and x − t are in K ′ + B(0, 1), and |x − (x − t)| ≤ δ, thus
|f(x)− ft(x)| ≤ ε.

Therefore for all t ∈ B(0, δ), we have for all x /∈ K ′, f(x) = ft(x) = 0, and for all x ∈ K ′, |f(x)−ft(x)| ≤ ε,
therefore

‖f − ft‖∞ ≤ sup
x∈Rn

|f(x)− ft(x)| ≤ ε
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this concludes the proof.

(5.6.c) Suppose that f ∈ L∞, and that ‖ft−f‖∞ → 0. Must f agree almost everywhere with a continuous
function?
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