CS 270 - Homework 1

Walid Krichene (23265217)

(1.a) We have

\[T_1(n) = 4T_1(n/3) + O(n^2) \]
\[= \sum_{k=0}^{\log_3 n} 4^k O((n/3^k)^2) \]
\[= O(n^2) \sum_{k=0}^{\log_3 n} (4/9)^k \]

and since 4/9 < 1, the sum is a O(1), therefore

\[T_1(n) = O(n^2) \]

We have

\[T_2(n) = 27T_2(n/3) + O(n^2) \]
\[= \sum_{k=0}^{\log_3 n} 27^k O((n/3^k)^2) \]
\[= O(n^2) \sum_{k=0}^{\log_3 n} (27/9)^k \]
\[= O(n^2) \sum_{k=0}^{\log_3 n} 3^k \]

and since 3 > 1, the sum is a O(3^{\log_3 n}) = O(n), therefore

\[T_2(n) = O(n^3) \]

(1.b) Decomposing each matrix into 4 submatrices, we can reduce the problem of multiplying \(n \times n \) matrices to 32 multiplications of \(\frac{n}{2} \times \frac{n}{2} \) matrices, plus addition operations (which is \(O(\frac{n^2}{2}) \)). Thus we can write

\[T(n) = 32T(n/2) + O(n^2) \]
\[= \sum_{k=0}^{\log_2 n} 32^k O((n/2^k)^2) \]
\[= O(n^2) \sum_{k=0}^{\log_2 n} \frac{32^k}{4} \]
\[= O(n^2) \sum_{k=0}^{\log_2 n} 8^k \]
the sum is $O(8^{\log_2 n}) = O(n^{\log_2 8}) = O(n^3)$, therefore

$$T(n) = O(n^5)$$

(1.c) This is not true in general. Counter-example: consider the graph $G = (V, E)$ where $V = \{s, v, t\}$ (with source s and sink t) and $E = \{(s, v, 1), (v, t, 1)\}$ (capacities are both 1). Then a min-cut is simply given by $\{(s, v, 1)\}$, however, increasing the capacity will not increase the max-flow, which will still have value 1.

![Graph](image)

In fact, we know that the value of the max-flow and value of min-cut coincide (the problems are dual), thus if the min-cut is not unique, increasing the capacity of any edge in the min-cut (thus the value of the cut), will not change the value of the min-cut for the new problem.

(1.d) The problem is

$$\text{maximize} \quad f(x, y, w)$$

$$\text{subject to} \quad x + y + w = 1$$

where $f(x, y, w) = \min(x + y, y + w, 3x + w)$ is the minimum of linear functions (thus concave). The problem is equivalent to the epigraph form

$$\text{maximize} \quad t$$

$$\text{subject to} \quad x + y + w = 1$$

$$f(x, y, w) \geq t$$

which is then equivalent to

$$\text{minimize} \quad t$$

$$\text{subject to} \quad x + y + w = 1$$

$$x + y \geq t$$

$$y + w \geq t$$

$$3x + w \geq t$$

(1.e) Let x^* be a solution to the relaxed problem

$$\text{minimize} \quad \sum_v x_v$$

$$\text{subject to} \quad \forall (u, v) \in E, x_u + x_v \geq 1$$

$$\forall u \in V, x_u \geq 0$$

with optimal value $p^* = \sum_v x_v$. We construct a feasible point (for the original problem) \bar{x} as follows:

$$\bar{x}_v = \begin{cases}
0 & \text{if } x^*_v = 0 \\
1 & \text{if } x^*_v > 0
\end{cases}$$

(1.f) We have: the optimal value $C(e_i, t)$ is the maximum of the values corresponding to the following situations:

- either we do not schedule job i on machine 1, and the value is $C(e_{i-1}, t)$
- or we do schedule job i on machine 1, in which case the previous job on machine 1 must end no later than $f(s_i)$. In which case the value is $v_i + C(f(s_i), t)$
Similarly for machine 2.

Therefore we have

\[
C(e_i, t) = \max(C(e_{i-1}, t), v_i + C(f(s_i), t)) \\
C(t, e_i) = \max(C(t, e_{i-1}), v_i + C(t, f(s_i)))
\]

(1.g) Running time: assuming there are \(n\) jobs (sorted by ascending end time, i.e. \(e_1 \leq \cdots \leq e_n\)), the solution is given by \(C(e_n, e_n)\). We initialize the DP using \(C(0, 0) = 0\), then compute \(C(e_i, e_j)\) for all \(i, j \in \{1, \ldots, n\}\). This is done in \(O(n^2)\) time.

(2.a) Assuming no two points are identical.

First, sort the points by increasing \(x\) (and break ties by sorting by increasing \(y\)).

\[
i \geq j \Rightarrow (x_i > x_j) \Rightarrow (x_i = x_j \land y_i > y_j)
\]

Then we observe that

- the first point \(p_{\sigma(1)}\) dominates no other point
- if we fix \(i \in \{1, \ldots, n\}\), then
 - for all \(j > i\), \(p_i\) does not dominate \(p_j\) (by the sorting)
 - and for all \(j < i\), we have \(x_i \geq x_j\), thus \(p_i\) dominates \(p_j\) if and only if \(y_i \geq y_j\)

therefore

\[
(p_i \text{ dominates no other point}) \iff (y_i < \min_{j < i} y_j)
\]

Therefore we obtain the following algorithm (let \(V\) be the set of points that dominate no other point)

Algorithm 1 Compute \(V\)

```
sort points according to the previous rule
initialize \(V\) to \(\{p_1\}\)
\[
\text{min}_y := y_1
\]
for \(i = 1\) to \(n\) do
  if \(y_i < \text{min}_y\) then
    add \(p_i\) to \(V\)
    \[
    \text{min}_y := y_i
    \]
  end if
end for
```

Complexity: sorting is done in \(O(n \log n)\), then computing the set \(S\) takes \(O(n)\). Thus the total complexity is \(O(n \log n)\).
First, let us order the sequence \(x_1, \ldots, x_n \) in ascending order, and call the resulting sequence \((a_i) \), and sort the sequence \(y_1, \ldots, y_n \) in descending order, and call the resulting sequence \((b_j) \). So we have

\[
\begin{align*}
a_1 & \leq \cdots \leq a_n \\
b_1 & \geq \cdots \geq b_n
\end{align*}
\]

Let, for all \(i, j \) in \(\{1, \ldots, n\} \),

\[
S_{i,j} = S \cap \{ (x, y) : x \leq a_i, y \geq b_j \}
\]

\(S_{i,j} \) is a subset of \(S \), and we have in particular \(S_{n,n} = S \).

Then let \(U_{i,j} \) be the solution for the input set \(S_{i,j} \) (i.e. \(U_{i,j} \) is the largest subset of \(S_{i,j} \) such that for each pair of points, no one dominates the other. If it is not unique, then any \(U_{i,j} \) is any largest set). For convenience, let \(C_{i,j} \) denote the cardinality of \(U_{i,j} \).

We seek to compute \(U_{n,n} \). We have

- \(U_{1,1} = S_{1,1} \) since \(S_{1,1} \) contains at most one point (note that it can be the empty set)
- to compute \(U_{i,j} \), we simply take the union of \(P_{i,j} \) and \(U_{i,j}^{\text{pre}} \) where

\[
P_{i,j} = \begin{cases}
\{(a_i, b_j)\} & \text{if } (a_i, b_j) \in S \\
\emptyset & \text{otherwise}
\end{cases}
\]

and

\[
U_{i,j}^{\text{pre}} = \begin{cases}
U_{i-1,j} & \text{if } c_{i-1,j} > c_{i,j-1} \\
U_{i-1,j} & \text{otherwise}
\end{cases}
\]

(here we use the convention \(U_{0,j} = U_{i,0} = \emptyset \)) Justification: this second identity uses the following observations:

1. if \(p = (a_i, b_j) \) is a point in \(S \), then any other point in \(S_{i,j} \) is not dominated by \(p \) and does not dominate \(p \), since \(\forall (x, y) \in S_{i,j}, \)

\[
\begin{align*}
x & \geq a_i \\
y & \leq b_j
\end{align*}
\]

therefore if \((a_i, b_j) \) is a point, it is necessarily in the optimal set, and we can write

\[
U_{i,j} = P_{i,j} \cup U_{i,j}^{\text{pre}}
\]

where \(U_{i,j}^{\text{pre}} \) is the solution for the set \(S_{i-1,j} \cup S_{i,j-1} \) (noting that any point in \(S_{i,j} \) is either in \(P_{i,j} \) or in \(S_{i-1,j} \cup S_{i,j-1} \)).

2. then we observe that \(U_{i,j}^{\text{pre}} \) is necessarily either a subset of \(U_{i-1,j} \), or a subset of \(U_{i,j-1} \), otherwise, we would have two points \((x, y), (x', y') \in U_{i,j}^{\text{pre}} \) such that \((x, y) \in S_{i-1,j} \setminus S_{i,j-1} \) and \((x', y') \in S_{i,j-1} \setminus S_{i-1,j} \), but then

\[
\begin{align*}
x & > a_{i-1} \geq x' \\
y & > b_{j-1} \geq y'
\end{align*}
\]

so \((x,y) \) would dominates \((x', y') \) (see figure)

finally we obtain a simple dynamic program
Algorithm 2 Compute U

sort $a_1 \leq \cdots \leq a_n$

sort $b_1 \geq \cdots \geq b_n$

initialize $U_{i,j} = \emptyset$ for all i, j in $\{0, \ldots, n\}$

initialize $C_{i,j} = 0$ for all i, j in $\{0, \ldots, n\}$

for $i = 1$ to n do
 for $j = 1$ to n do
 if (a_i, b_j) is a point then
 add it to $U_{i,j}$
 end if
 if $C_{i-1,j} > C_{i,j-1}$ then
 add $U_{i-1,j}$ to $U_{i,j}$ (union)
 else
 add $U_{i,j-1}$ to $U_{i,j}$ (union)
 end if
 $C_{i,j} := \text{card}(U_{i,j})$
 end for
end for
(3) Rule for clause vertex c, corresponding to the clause

$$\lor_{i \in I} s_i$$

where I is a subset of $\{1, \ldots, n\}$ and for each $i \in I$, s_i is either x_i or \bar{x}_i:

- for all $i \notin I$, add edge (c, w_i)
- for all $i \in I$, if $s_i = x_i$, add edge (c, v'_i), otherwise add edge (c, v_i)

justification: under this scheme, each clause vertex is connected to exactly n vertices, and among those, $\{w_i, i \in I\}$ will always be colored in distinct true colors. Thus we can color c in a true color if and only if one (at least) of the variable vertices connected to c is colored in “false”. In other words, given an assignment and the corresponding coloring:

The clause evaluates to true $\iff \exists i \in I : s_i$ is true
$\iff \exists i \in I : c$ is connected to a false color
$\iff c$ can be colored in true

(4.a) For each $i \in \{1, \ldots, n\}$, count the mismatches between $s_1(i : i + m - 1)$ and s_2, if less than or equal to k, then i is a valid location. The total complexity is $O(nm)$ time.

Algorithm 3 find occurrence locations(s_1, s_2, k)

```plaintext
for $i = 0$ to $n - m$ do
    mismatches := 0
    for $j = 0$ to $m - 1$ do
        if $\neg(s_2(i + j) = s_1(j))$ then
            mismatches ++
        end if
    end for
    if mismatches $\leq k$ then
        add $i$ to the list of locations
    end if
end for
```
Let the bit patterns s_1 and s_2 be given by two sequences of -1 and $+1$. Then consider the reversed sequence \bar{s}_2 given by
\[
\forall i \in \{0, \ldots, n-1\}, \quad \bar{s}_2(i) = s_2(n-1-i)
\]
and the convolution of the two signals is given by, for $i \in \{0, \ldots, n-1\}$
\[
\forall s_1 \ast \bar{s}_2(i) = \sum_{j=0}^{m-1} s_1(j)\bar{s}_2(i-j) = \sum_{j=0}^{m-1} s_1(j)s_2(n-1-i+j)
\]
we observe that for a fixed $i \in \{1, \ldots, n\}$, $s_1 \ast \bar{s}_2(n-1-i)$ is the sum $\sum_{j=0}^{m-1} s_1(j)s_2(i+j)$, and each term in this sum of m terms is
\[
s_1(j)s_2(i+j) = \begin{cases} +1 & \text{if the two bits agree} \\ -1 & \text{otherwise} \end{cases}
\]
therefore the number of mismatches is equal to $m - s_1 \ast \bar{s}_2(n-1-i)$, and we have
\[
(s_1 \text{ occurs in } s_2 \text{ at the location } i) \iff (m - s_1 \ast \bar{s}_2(n-1-i) \leq k)
\]
we obtain the following algorithm The complexity is $O(n \log n)$ (the convolution step is $O(n \log n)$, the

Algorithm 4 find occurrence locations(s_1, s_2, k)

$\bar{s}_2 := \text{mirror}(s_2)$
$f := \text{conv}(s_1, \bar{s}_2)$
for $i = 0$ to $n-1$ do
 if $m - f(n-1-i) \leq k$ then
 add i to the list of locations
 end if
end for

rest is linear)
Each reversal \(\rho(i, j) \) may only create or remove breakpoints at \((i - 1, i)\) and \((j, j + 1)\), therefore on reversal may decrease the number of breakpoints by at most 2. And since the target permutation (the identity) has 0 breakpoints, we have a lower bound on the minimal number of reversals

\[
m(\pi) \geq b(\pi)/2
\]

where \(m(\pi) \) is the

Idea of the algorithm:

• at each step, prioritize reversals that decrease the most the number of breakpoints
• when there are ties, prioritize those that preserve maximal decreasing runs

Algorithm 5 find occurrence locations\((s_1, s_2, k)\)

```algorithm
while permutation contains a breakpoint do
    choose reversal that maximizes decrease in breakpoints
    if tie then
        choose reversal that preserves a maximal run of decreasing sequence
    end if
end while
```

Claim: the number of reversals \(k(\pi) \) required by this algorithm is

\[
k(\pi) \leq 2b(\pi)
\]

\[
\leq 4 \frac{b(\pi)}{2}
\]

\[
\leq 4m(\pi)
\]

the bound \(k(\pi) \leq 2b(\pi) \) follows from these two facts:

• if there is a decreasing run (of any length > 2) then there exists a reversal that decreases the number of breakpoints (can be seen by enumerating the possibilities)

• if there is no decreasing run, any reversal will create a decreasing run, in particular there exists a reversal that will create a decreasing run without increasing breakpoints.