
CS 270 - Homework 2

Walid Krichene (23265217)

(1) In both routing problems, we seek to send one unit of flow between each pair (si, ti), and to minimize
the maximum edge flow. If c(e) is the total flow on edge e, then the problem is to minimize maxe c(e).

In the path routing problem, we add the constraint that flows should be integers, therefore a single path
will connect each pair of source-sink (si, ti). The fractional routing problem is thus a relaxation of the path
routing problem.

(1.a) Consider the simple network in figure 1, where the only source-sink pair is (s, t). In the fractional
routing problem, the optimal value is 1/2, and corresponds to routing half of the flow on each edge. In the
path routing problem, the optimal value is 1.

s t

Figure 1: Example network for which the solution of fractional routing is strictly better than the solution of
the path routing.

(1.b) Consider the toll problem, in which we seek to maximize
∑

i w(p∗i) where p∗i is the shortest path for
the weight function w. Thus the problem is

maximizew
∑
i

w(p∗i)

subject to
∑
e

w(e) = 1

∀e, w(e) ≥ 0

here w(p) is the total weight on a given path p, and p∗i is the shortest path connecting (si, ti).
For all i, let Pi be the set of paths that connect source-sink pair (si, ti), and let P = ∪iPi (disjoint union).

A feasible point for the fractional routing problem is given by a function (or a vector of flows) f

f : P → [0, 1]

p 7→ f(p)

where f(p) is the amount of flow along path p. This function also has to satisfy the following conditions

• for all i,
∑

p∈Pi
f(p) = 1

1

We denote by F the feasible set. The problem is

minimizef∈F max
e∈E

c(e)

subject to c(e) =
∑
i

∑
p∈Pi:e∈p

f(p)

here c(e) is the total flow on edge e. (this is by far not the most efficient way of encoding the problem if we
wanted to solve it is suitable for this proof)

Now let f be any feasible point for the fractional routing problem, and let c̄ = maxe c(e) be the corre-
sponding objective value. And let w∗ be a maximizer of the toll problem, with corresponding shortest paths
p∗i . Then we have

c̄ =
∑
e

w∗(e)c̄ since w∗ is feasible for the toll problem

≥
∑
e

w∗(e)c(e)

=
∑
e

w∗(e)
∑
i

∑
p∈Pi:e∈p

f(p) using the definition of c(e)

=
∑
i

∑
p∈Pi

f(p)

(∑
e:e∈p

w∗(e)

) rearranging the sum

=
∑
i

∑
p∈Pi

f(p)w(p)

≥
∑
i

∑
p∈Pi

f(p)

w(p∗i) using w(p∗i) = min
p∈Pi

w(p)

=
∑
i

w(p∗i) using
∑
p∈Pi

f(p) = 1

which proves that the optimal value of the toll game is a lower bound on the fractional routing game

2

(3) Let G = (U∪V,E) be a bipartite graph, with |U | = |V | = n. To simplify notation, let U = {u1, . . . , un}
and V = {v1, . . . , vn}. Let m be the number of edges of positive weight.

(3.a) Given a weight function w : E → R, let (Mw, pw) be a solution pair for the max weight matching
problem and the vertex cover problem with weights w. In other words,

• Mw ⊂ E is a solution to the maximum wight matching problem.

• pw : U ∪ V → R is a solution to the vertex cover problem. In particular,

pw(u) + pw(v) ≥ w(e), ∀e = (u, v)

with equality for e ∈Mw (matched edge ⇒ tight edge).

Fix an edge ē ∈ E, and consider the max weight matching problem on the new weight function w′ : E → R,
obtained by increasing the weight of edge ē:

w′(ē) = w(ē) + c

We seek an efficient algorithm to compute a solution pair (Mw′ , pw′)
We first observe that after increasing the weight of the edge ē = (ū, v̄), the price pw may become infeasible,

if pw(ē) > pw(v̄) + pw(ū). Therefore we first increase the price of ū

p(ū) = pw(ū) + c

Tight edges incident to ū may become loose, however all other tight edges remain tight. Therefore by
increasing p(ū), we drop at most one edge from the matching, thus we have a matching of size n− 1 and it
suffices to increase the size of the matching by 1.

We look for an augmenting alternating path on the tight edges, that connects the two unmatched nodes
(as in the original version of the algorithm presented in class, we orient matched tight edges from U to V
and tight unmatched edges from V to U). This can be done by running BFS, starting from the unmatched
node in U , and updating the reachable set R = UR ∪ VR. When the BFS reaches a fixed point (i.e. no tight
edges going out of the reachable set), then

• either we found an augmenting alternating path, and we are done, since this increases the size of the
matching and we obtain a matching of size n.

• or no augmenting alternating path is found, and we have a cut between the set of reachable nodes
R = UR ∪ VR, and the set of non reachable nodes N = UN ∪ VN (so we have U = UR ∪ UN and
V = VR ∪ VN , the unions being disjoint). Then all edges from UR to VN are non-tight, and we can
update the prices as follows

∀u ∈ UR, p(u) := p(u)− δ
∀v ∈ VR, p(v) := p(v) + δ

where
δ = min

e=(u,v)∈(UR×VN)
p(u) + p(v)− w(e)

the edges between UR and VR are still tight, and we created a new tight edge from UR to VN , thus
increasing the reachable set. We continue the BFS until the next fixed point is reached.

The BFS requires exploring O(m) edges. However, there are two issues here:

3

• if no additional data structure is used, computing each δ requires O(n) time. However this can be
improved by using a priority queue (with updates O(log n)) that stores non-tight edges going out of
the reachable set, where the priority of an edge e = (u, v) is its “non-tightness” p(u) + p(v)−w(e) > 0.
This requires a minor modification of the algorithm: instead of running the BFS on the graph of tight
edges, we run it on the entire graph, and when a non-tight edge is explored we update the priority
queue but do not add the node to the reachable set.

• each price update requires O(n) time. We can work around this by storing, at the k-th fixed point

1. the nodes that we need to update

2. the value of δ

then we only update the prices at the end of the BFS. More precisely, let URk
∪ VRk

be the reachable
set at fixed point k, and δk be the corresponding price update. Call

UBk
= URk

\ URk−1

VBk
= VRk

\ VRk−1

such that

URk
= ∪i≤kUBk

VRk
= ∪i≤kVBk

Bk stands for “the kth bucket”. Let

k(u) = {k : u ∈ UBk
}

k(v) = {k : v ∈ VBk
}

This is well defined since the UBk
’s form a partition of U (and similarly for V). Then we have u is

in the reachable set URk
for all k ≥ k(u), and the price of u is changed at each k ≥ i. Therefore the

prices at stage k are given by

∀u, p(u) = p0(u)−
∑

k≥k(u)

δk (1)

∀v, p(v) = p0(v)−
∑

k≥k(v)

δk (2)

where p0 are the initial prices (before running BFS). Therefore we only need to keep track of the δk,
and we can compute the prices efficiently at the end of the BFS.

Updating the priorities: we need to ensure that the priorities remain consistent, without having to
update all the priorities at each stage k. At stage k, for an edge e = (u, v) in the priority queue, we
know that u is reachable and v is not, i.e. therefore the non-tightness of edge e is decreased by δk.
This does not change the order in the queue, and instead of updating the priorities of nodes currently
in the queue, we add δk to the priority of all nodes in future stages. Thus we work with these offset
priorities.

To summarize: we run a BFS (on the graph of tight and non-tight edges, oriented as explained above)
that maintains lists of reachable nodes Rk = URk

∪ VRk
, a list of price updates δk, and a priority queue of

non-tight edges going out of the reachable set. When a new edge is explored, if the edge is non-tight, add it
to the priority queue (using the offset priority as explained above). If the edge is tight, add the new node to
the reachable set URk

or VRk
, and to the bucket UBk

or VBk
. When the k-th fixed-point is reached

• delete the top element ek from the priority queue, add the new node to the list of nodes to explore.

4

• store the value δk

• increment k

Once BFS is done, compute the prices using (1), (2) and the buckets that were computed during the BFS.

Complexity

• The BFS explores m edges, and each explored edge requires up to O(log n) time (if the priority queue
needs to be updated). Thus the complexity of the BFS run is O(m log n)

• computing the prices pw′ is done in O(max(n,m)). (in more details: for each i ∈ {1, . . . , kmax},
compute δ̄i =

∑
k≥i δk, this is done in O(kmax) = O(m), then for each bucket UBk

, the price of nodes

u ∈ UBk
is p0(u) + δ̄k. Computing these prices is O(1) per node, thus the total complexity is O(n))

The total complexity is O(m log n) +O(max(n,m)) = O(m log n) time.

(3.b) We can use the algorithm in (3.b) to solve the max weight matching problem (and the vertex cover
problem) in O(m2 log n) time:

• start with the weight function w ≡ 0, (identically zero, i.e. w(e) = 0∀e ∈ E). A solution pair is given
by (M,v) where v ≡ 0 is identically zero, and M = {(ui, vi)}i=1...n for example.

• for all e ∈ E, update the solution by increasing the weight of edge e from 0 to w(e), and applying the
algorithm from (3.a).

Each iteration is O(m log n), and we have m iterations (one per edge) thus the total complexity is
O(m2 log n)

5

